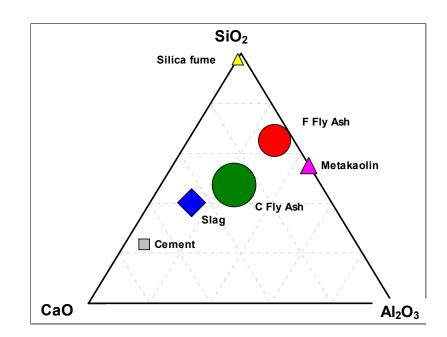
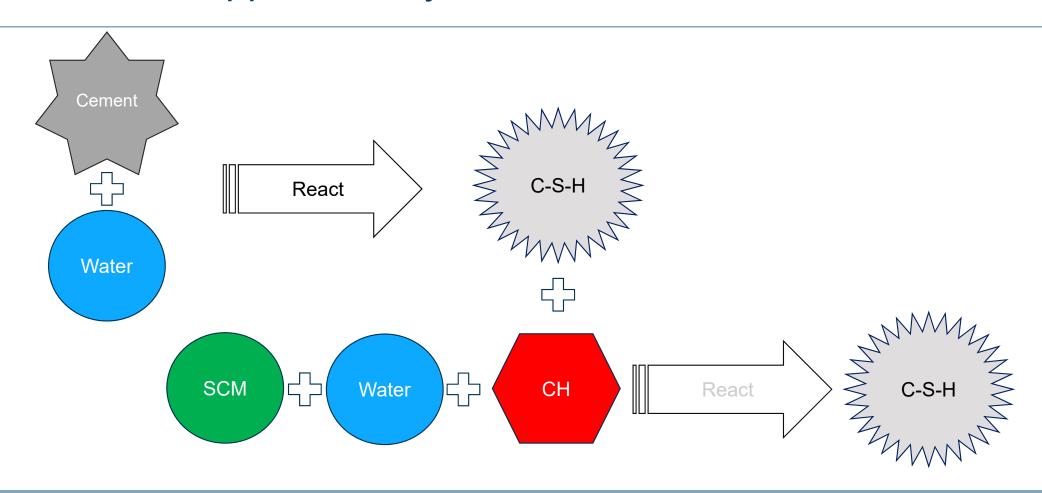


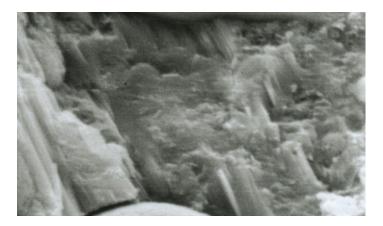
avements in Desert **Environments**





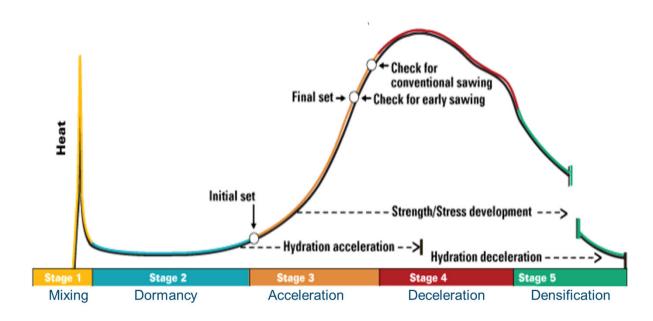
Sources

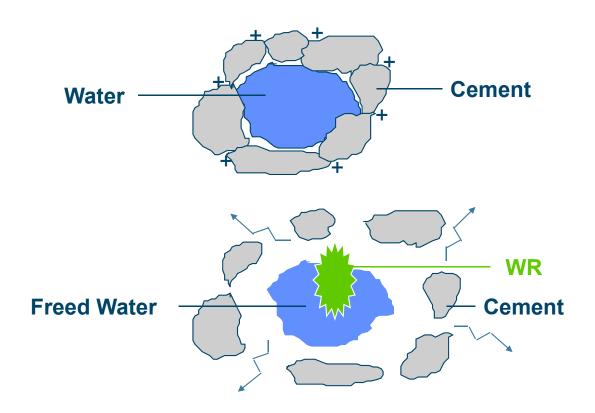
- Fly ash coal fired utilities
- Slag iron making
- Silica fume ferro silicon
- Metakaolin partially calcined clay



Supplementary Cementitious Materials

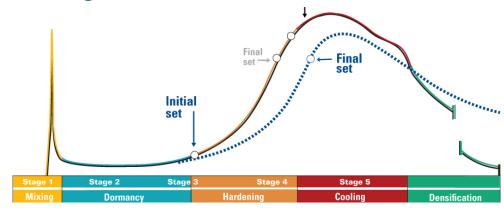
So What Do They Do?


- SCM's change properties
- Means we have to allow for them
- Cracking risk changes
- Finishing and curing needs change
- Strength rate slows
- Permeability decreases (good)



Water

- Potable or
- Free of organics & contaminants



Water Reducers

Retarders

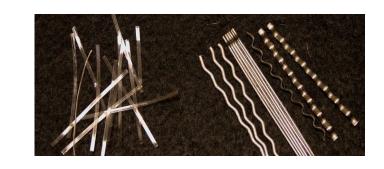
- Slow hydration
 - Slows need for sawing in hot weather
 - Reduces heat of hydration peak
 - May reduce slump loss
 - May improve long-term strength
 - May increase risk of plastic cracking
- Often based on sugars

Accelerators

- Increase rate of hydration
 - Setting time decreased in cold weather
 - Increased early strength
 - May increase risk of shrinkage cracking
- Avoid chloride based products if steel is in the concrete

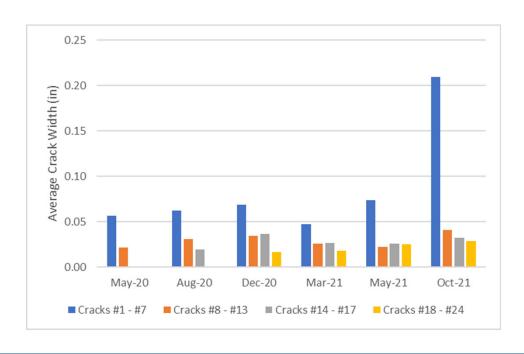
Fibers - Critical Properties

- Stiffness
- Bond
- Strength
- Size
- Durability



"Micro" vs. "Macro" Fibers

- Micro (Low Volume Addition) Fibers
 - Diameters < 0.004"
 - Polypropylene, Nylon, Carbon, Cellulose
 - 0.03 0.1% volume (0.5-1.5#/cy)



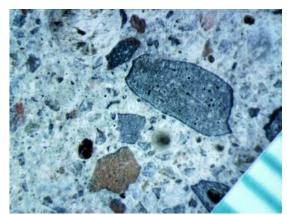
- Macro (High Volume Addition) Fibers
 - Diameters: 0.008 0.03"
 - Synthetic, Steel 0.2 1.0% volume [3 15#/cy (Synthetic) or 20-100#/cy (Steel)]

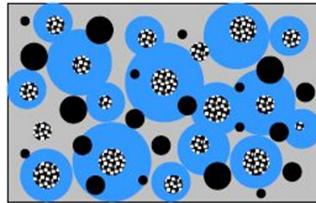
Effects of Fibers

- Do not affect strength
- Do increase toughness / strain capacity

Curing

Keep the water in...


Curing compound should be applied as soon as practical after finishing


- Should be white
- Poly-alpha-methylstyrene is effective
- Alternatives are water fogging, plastic sheeting, ponding
- How do we know it is good?

Internal Curing

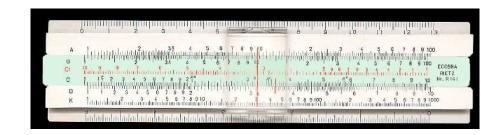
- Provide curing water uniformly through the section
- Material should
 - Hold sufficient water
 - Hold the water until needed and not effect w/c
 - Give up water at high RH (desorption)
 - Not adversely effect the concrete quality

Proportioning

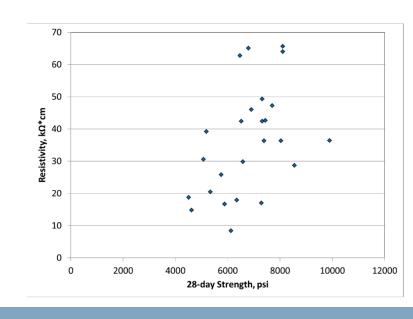
Proportioning Approaches Past

Structural concrete 1:2:4

• Other concrete 1:3:6


Waterproof concrete Add salt

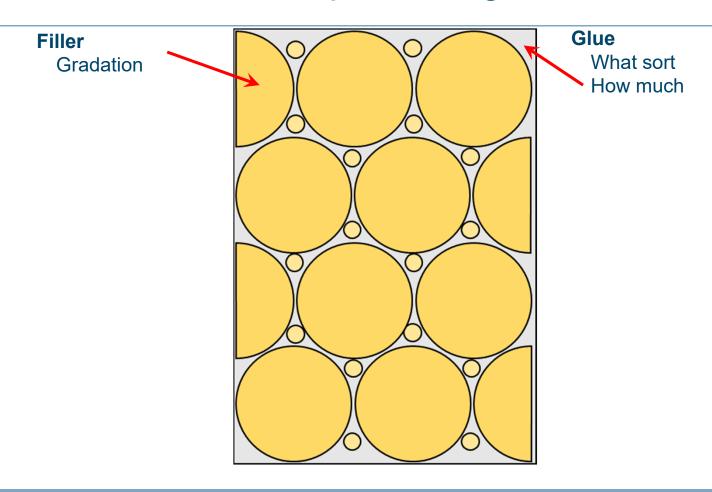
- No chemicals
- No SCMs
- Precision was ugly
- Bulking made it worse


Proportioning Approaches Present

- ACI 211
 - Last revised in 1991
 - Linear
- Developed
 - Before water reducers
 - Before supplementary cementitious materials
- Primarily focused on structural concrete
 - 100 mm (4") slump
 - 30 MPa (~4000 psi)

Preconceptions

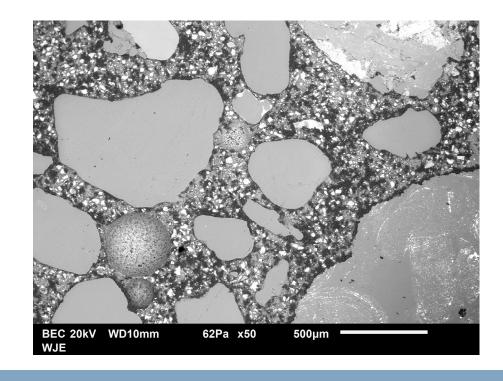
- More ment = m strength
- Streigth is ever thin
- Slui p indig és qual
- Gracetic s of individual fractions are critical



What do we need?

- Transport properties (everywhere)
- Aggregate stability (everywhere)
- Strength (everywhere)
- Cold weather resistance (cold locations)
- Shrinkage (dry locations)
- Workability (everywhere)

Proportioning



How do we proportion to achieve design goals?

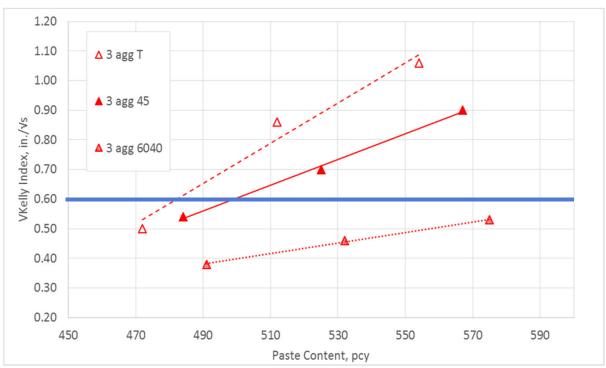
		Workability	Transport	Strength	Cold weather	Shrinkage	Aggregate stability
Aggregate System	Type, gradation	√ ✓	-	-	-	-	✓ ✓
Paste quality	Air, w/cm, SCM type and dose	✓	4 4	44	44	√	√
Paste quantity	Vp/Vv	✓	-	-	-	√ √	-

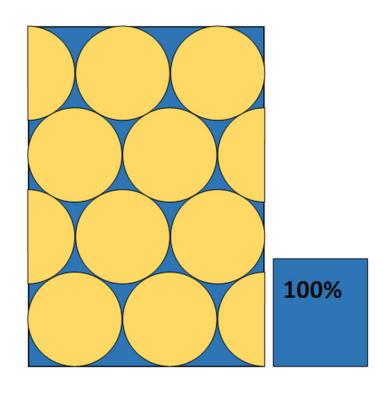
Step 1 Paste Quality

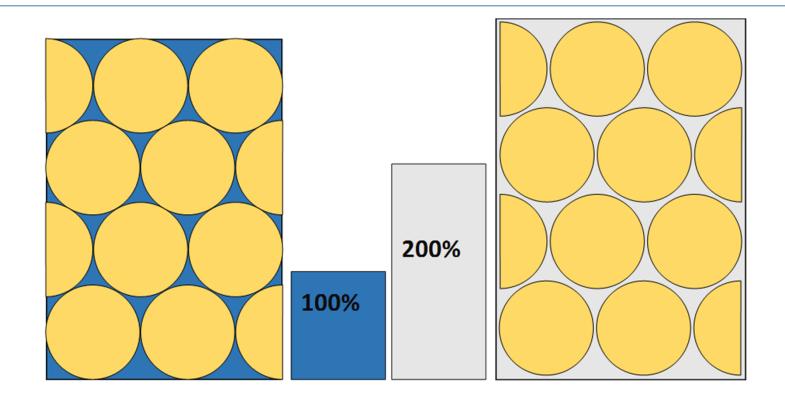
- Binder type
 - Cement type
 - SCM type and dosage
- w/cm
 - ~0.38-0.42
- Air void system
 - < 0.2 SAM
 - <0.008 in. spacing factor
 - >5% in place
 - Stable

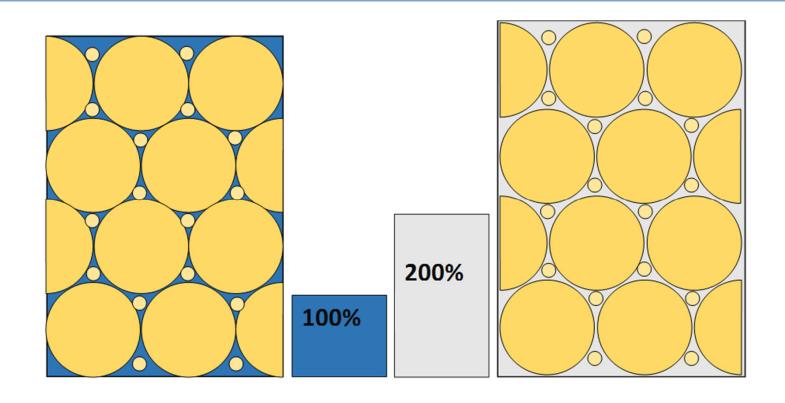
Step 2 Aggregate system

- Choices...
 - 2 bins or 3?
 - ASTM C33
 - Or combined:
 - Haystack
 - Shilstone Plot
 - Power 45
 - Tarantula

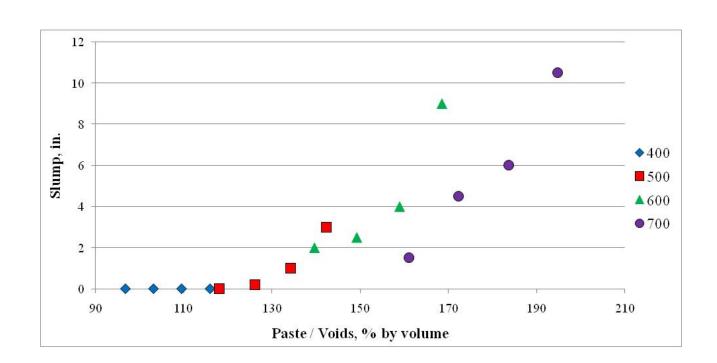

Step 2 Aggregate system

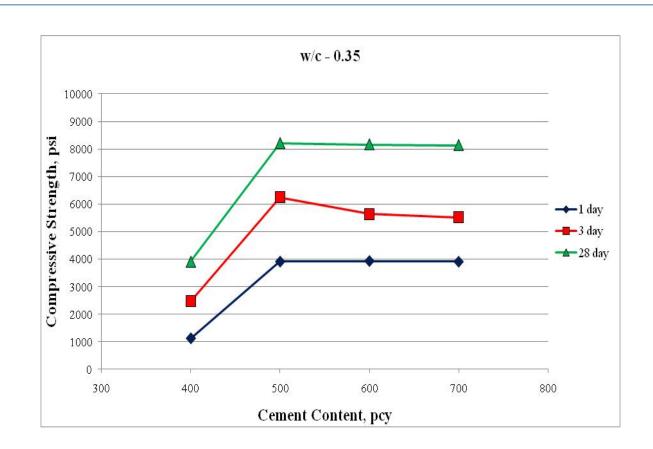

Tarantula Curve

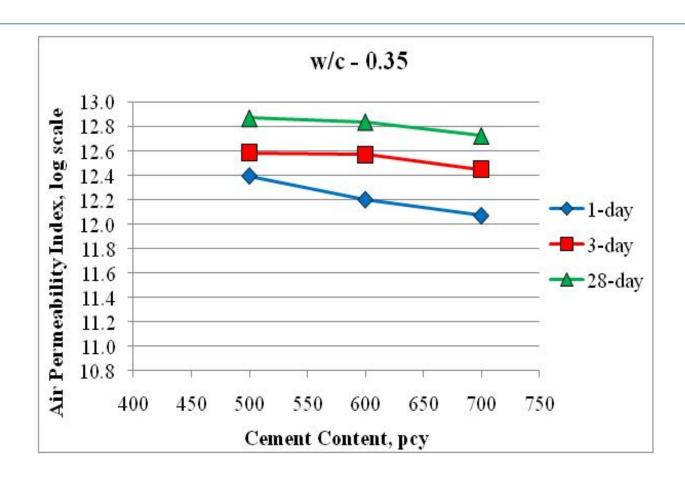


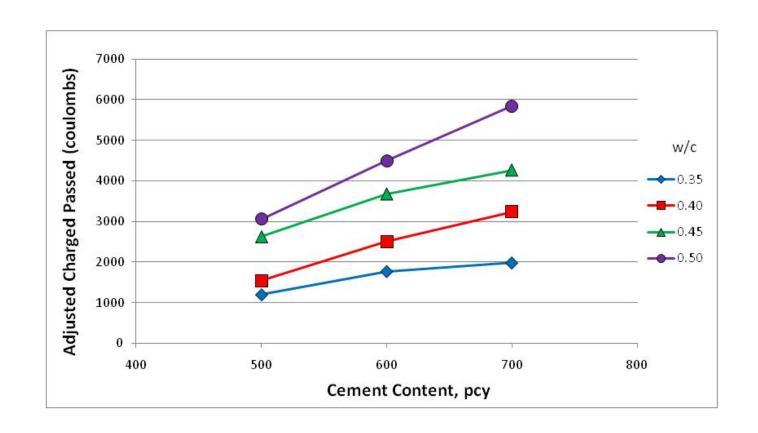

Step 2 Aggregate system

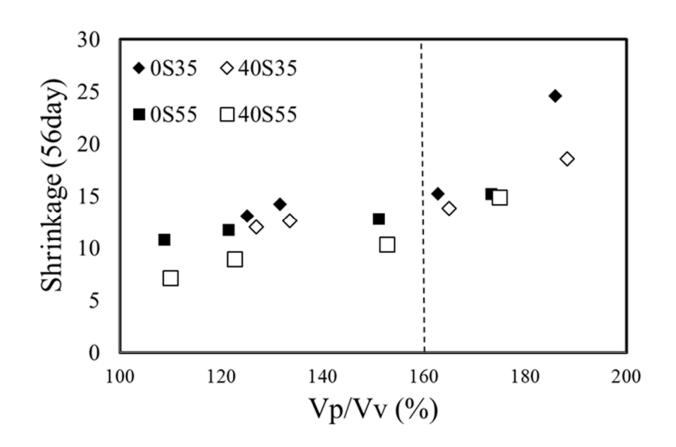
• Choose an aggregate system...

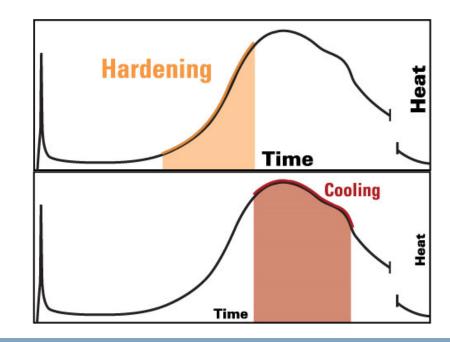




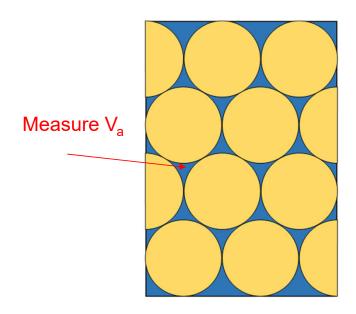

Workability

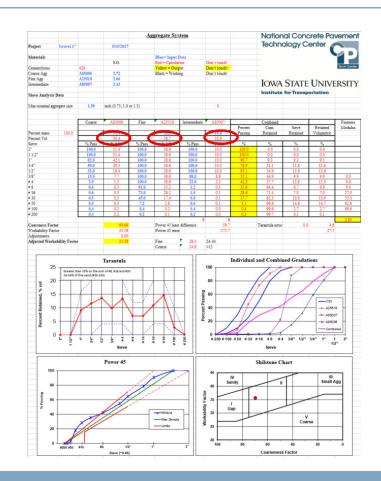

Strength


Air Permeability


Rapid Chloride Penetration

Shrinkage




- Need a minimum paste for workability
- Excess has a:
 - Small negative effect on strength
 - Negative effect on permeability, shrinkage, cost
 - Negative effect on heat
- "Optimum" depends on:
 - Aggregate type
 - Gradation
 - Binder type
- Typically Vv ~125-200%

Doing the Sums

The wonders of a spreadsheet and a solver function...

Doing the Sums

The wonders of a spreadsheet...

	Pa	aste Quali	<u>ty</u>		National Concrete Pavement			
Project	Gravel 1"		5/15/20	7	Techn	nology Center		
Materials								
		Targets						Tech Center
			R.D.					rech Center
Cement	Type I		3.15					
SCM 1	F Ash		2.65		LOW	CTATE	I Is try	EDOITE
SCM 2	Slag		1.00		IOWA	SIALE	UNIV	ERSITY
Coarse Agg	A85006		2.72		Inotituto	for Transp	outotion	
Fine Agg	A25518		2.66		institute	for transp	ortation	
Intermediate	A85007		2.43					
Water			1.00					
						Blue= Input D	ata	
Cementitious		428	pcy			Red = Calculati	on	Don't touch!
w/cm		0.42				Yellow = Outpu	ıt	Don't touch!
Air %		5.0	%			Black = Workin	ng	Don't touch!
% SCM 1		20	%					
% SCM 2		0	%					
Voids in aggregate	e	25.3	%					
Required Vp/Vv		125	%					
Ctronath		4000	noi	7 days				
Strength RCP			coulomb					
Wenner			kΩ-cm	56 days				
weimer		27	K11-CIII	28 days				

Doing the Sums

The wonders of a spreadsheet...

	Mixtu	ire Propoi	rtions			National Concrete Paver	National Concrete Pavement			
Project	Gravel 1"		5/15/201	17		Technology Center				
Mixture Propor	tions									
		Targets		Actual						
			Pounds	R.D.	Volume	Tec	h Center			
Cement	Type I		342	3.15	1.74					
SCM 1	F Ash		86	2.65	0.52	Love Crame I Is we made				
SCM 2	Slag		0	1.00	0.00	IOWA STATE UNIVERS	SITY			
Coarse Agg	A85006		1753	2.72	10.33	Institute for Transportation				
Fine Agg	A25518		1318	2.66	7.94	Institute for Transportation				
Intermediate	A85007		340	2.43	2.24					
Water			180	1.00	2.88					
Air %			5.0		1.35	Blue= Input Data				
			4019	4	27.00	Red = Calculation Don's	t touch!			
						Yellow = Output Don's	t touch!			
Cementitious		428	428	pcy		Black = Working Don's	t touch!			
Volume of paste			24.0	%						
Volume of aggs			76.0	%						
Volume of voids			19.2							
vp/vv		125	125.0							
w/cm		0.42	0.42							
% SCM 1		20	20	%						
% SCM 2		0	0	%						
Mass aggs		3411	3411	pcy						
Excess paste, %			4.8	%						

Trial Batches


- Workability
- Air void system
- Setting
- Strength gain
- Permeability

So

- Its all about the water...
 - The right amount
 - At the right time

Concrete and Water

- · At mixing less water is better
- After setting more water is better
- · Later on less water is better

Design and Construction of Sustainable Concrete Pavements in Desert Environments

1.	Concrete Mixtures for Pavement – This session will present the "How's & Why's" of
	specifying and proportioning cements, SCMs, admixtures, and aggregates for desert pavements.
	Peter Taylor, CP Tech Center

Tuesday, April 19th 9:00 to 10:15 am

2. Pavement Design and Critical Properties — Designing and specifying pavements for desert environments requires a solid understanding of how design relates to placement and performance. Tom Van Dam, NCE

Tuesday, April 26th 9:00 to 10:15 am

3. Concrete Pavement Inspection and Testing — Pavement quality is controlled through comprehensive inspection and testing requirements. Desert environments present added paving risks that should be accounted for. Mike Praul, FHWA

Tuesday, May 10th 9:00 to 10:15 am

4. Pavement Construction and Performance – Successful paving in desert environments requires attention to key construction processes. Pavement condition data indicates excellent performance in desert environments. Angel Mateos, UCPRC; Dave Rath, Southwest Concrete Paving Company; and Matt Fonte, Fonte & Company

Tuesday, May 24th 9:00 to 10:15 am