National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Integrated Materials and Construction Practices for Concrete Pavement

May 13, 2025

A State-of-the-Practice Manual 2nd Edition

Institute for Transportation

National Concrete Pavement Technology Center

National Concrete Pavement Technology Center (CP Tech Center)

NDUS

S

 \triangleright

G

M

C

E

Missions:

- Advance innovative concrete pavement technologies
- Lead implementation of best practices
- Educate the concrete pavement community
- Find solutions to strategic problems
- Provide independent technical expertise

www.cptechcenter.org

National Concrete Consortium - NC²

TPF-5(544) Commitments
36 states + IL Tollway

• Other information available:

- E-News
- MAP Briefs
- Research Resources

NCC Fall Meeting September 9-11, 2025: Springfield, MA

3000 2001 200

CP Tech **Publications**

Why Are We Here?

- Because the boss insisted
- Collect PDHs
- To learn about concrete!

IMCP Workshop

- Please ask questions that is how we all learn
- Presenters today:
 - Peter Taylor PhD, PE ptaylor@iastate.edu

Jerod Gross, PE, LEED AP jgross@snyder-associates.com

Today's Participants?

Organizations

- State DOTs
- FHWA
- Local agencies
- Contractors
- Materials suppliers
- Consultants
- Universities
- Other?

Why Was the Manual Developed?

Help practitioners

- Understand how their decisions will affect other processes
- Make wise decisions
- Be smart inspectors
- Provide a ready reference and/or troubleshooting guide

Today's Agenda

8:00	Welcome & Introduction	
8:15	Overview of Concrete Pavements	11:45
8:45	Breakout Discussion	12:30
9:15	Design	1:00
9:45	BREAK	2:00
10.15	Mataviala 9. Lludvatiava	2:30
10:15	Materials & Hydration	3:00
10:45	ACMs	3:45
11:15	Mixture Proportions	4:15

LUNCH Breakout Discussion Construction BREAK Tests & Specifications Quality & Inspections Application to Mass Adjourn

Overview

Questions before we dig in?

Overview of Concrete Pavements

National Concrete Pavement Technology Center

Outline

Sustainability

Durability

Concrete History

Concrete pavements can and should last a long time

Concrete History

LeMars, Iowa (1904 construction) - 1950 photo

Eddyville, Iowa (1909 construction)

Why Build More Concrete?

Our society is built on the ability to move people, goods and energy

- Food
- Expertise
- Education
- Healthcare

Pavement should last a long time

Which is more Economical?

What is Sustainability?

A sustainable pavement is one that achieves its specific engineering goals, while:

- It meets basic human needs
- Uses resources effectively
- Preserves/ restores surrounding ecosystems

Begins with Sustainable Value

How to Improve Concrete Sustainability

Target the Cementitious Binder

- Use Type IL & SCMs
- SCMs improve workability, durability & long term strength (watch setting & strength rate)

Target the Concrete Mixture

- Optimized aggregate gradations
- Paste Volume < 25%

Target Mixture Performance Requirements

- Implementing performance-based specifications
- AASHTO R101

Durability - Pavement Life Cycle

Sustainability Through 'Use' Phase

- 80% of the energy and emissions associated with pavements is incurred during use phase
 - Fuel efficiency / Rolling resistance
 - Albedo / Reflectance
 - Heat island
 - Lighting costs
 - Grinding
 - Smoothness
 - Less noise

MIT Fuel/Carbon Savings Calculator

Assessing Durability

How do we assess durability? What can we measure?

- Performance assessment
 - Condition ratings (Distresses)
 - Structural capacity (PCI)
 - Ride quality (IRI)
 - Friction characteristics for safety
 - Noise

Durability based on LCCA

Life-cycle cost analysis (LCCA)

- ACPA Life Cycle Cost Analysis (2020)
- FHWA's RealCost 3.0 (FHWA 2011)
- CPAM LCCA spreadsheet
- MIT Concrete Sustainability Hub

Leslie Ashauer, Wisconsin Concrete Pavement Association

24

What about Cement?

Costs can be reduced by reducing cement (and cutting carbon by as much as 50%) by:

- efficient thickness design
- 30% SCM's
- Optimized aggregate gradation
- Introduce ground limestone
- Dry processing cement production (no slurry)

Portland Limestone Cements – Type IL

- 5% 15% finely ground limestone interground with clinker
- Can reduce carbon footprint by 10%
- Equivalent performance with ordinary portland cement
- 2022 was changeover year
- All domestic producers switched to PLC
- ASTM C595 referenced in specifications

PLC Specified 2020 to 2024

• 2018

• 2024

Blended Cement as a Share of Total Cement - US

Source: USGS & PCA

Ternary Paving Mixtures

- Supplementary Cementitious Materials (SCMs)
 - Fly ash
 - Slag
 - Silica fume
 - Natural pozzolans
- Can enhance engineering properties and performance of pavements
- Can improve sustainability (\$\$ & CO₂)

Strategies for Design

Local and Recycled Materials

- Use less fuel to haul it in
- Avoid throwing away the old pavement
 - Recycling

Recycled Concrete Aggregate

Technical products developed:

- How to engineer RCA applications
- Use RCA in most advantageous way

Products:

- RCA Materials: Practitioner's Reference Guide
- Webinar series
- Tech Briefs
- 2016 Benchmarking Survey
- Technical Resources

cptechcenter.org/concrete-recycling/

Recycling Concrete Pavement Materials:

A PRACTITIONER'S REFERENCE GUIDE

National Concrete Pavement lechnology Center

IOWA STATE UNIVERSIT

31

What is Performance Engineered Mixtures (PEM)?

- Performance-Engineered Mixtures TPF-5(368) 2017-2022
- Performance Centered Concrete Construction TPF-5(517) 2024-2029
- Assist states in adoption of test methods that will help deliver concrete durability
- Focus on the things that matter

cptechcenter.org/pem

How can we achieve durable concrete?

Six Critical Properties

- 1. Transport properties
- 2. Aggregate stability
- 3. Freeze-thaw durability
- 4. Shrinkage
- 5. Workability
- 6. Strength

These are the properties of PEM

PEM Shadow Projects

- State DOT & MCTC coordination
- Test Training
- Data collection and evaluation

Durability through PEM

Optimized Aggregate Gradation

- Lower cement (30 + pcy)
- Lower paste
- Lower shrinkage
 - Reduced cracking
- Cost savings
- Increased workability
- Increased durability

Use of SCMs

- Lower cement
- Cost savings
- Increased workability
- Increased resistivity
- Increased durability
- Reduce CO2

PEM Accomplishments

AASHTO R101 DOT specification improvements Training PEM exposure

Standard Practice for

Developing Performance Engineered Concrete Pavement Mixtures

AASHTO Designation: R 101-221

Adopted: 2022

Technical Subcommittee: 3c, Hardened Concrete

American Association of State Highway and Transportation Officials 555 12th Street NW, Suite 1000 Washington, DC 20004
AASHTO R 101 Philosophy and Goals

- Allows an agency to specify performance characteristics rather than prescriptive
- Respects agency traditions and knowledge
 Keep existing requirements that make sense based on local knowledge and experience
- Not a Specification
 - A tool to help agencies develop a specification that fits their needs

AASHTO R101 - Table 2

	specification workshee	i for Minkeire i Topo	rtioning								
					Mixture		Selection				
Section	Property	Specified Test	Specified	Value	Qualification	Acceptance	Details	Special Notes			
	6.3 Concrete Strength										
6.3.1	Flexural Strength	T 97	4.1 MPa	600 psi	Yes	Yes	Choose either	8			
6.3.2	Compressive Strength	T 22M/T 22	27.5 MPa	4000 psi	Yes	Yes	or both				
		6.4 Reducing Unv	vanted Slab Warpi	ing and Cracki	ing Due to Shrink	age (if cracking	g is a concern)				
6.4.1.1	Volume of Paste	187-07	≤25%		Yes	No	Choose only				
6.4.1.2	Unrestrained Volume Change	T 160	420 με	At 28 days	Yes	No	one	 Expansion (mortar b) 	ar)		
6.4.2.2	Unrestrained Volume Change	T 160	360, 420, 480 με	At 91 days	Yes	No			,		
6.4.2.1.1	Unrestrained Volume Change	Т 334	No cracking	At 180 days	Yes	No		Single Ring Test			
6.4.2.1.2	Restrained Volume Change	T 363	<60% f'r	At 7 days	Yes	No		Dual Ring Test			
		6.5 I	Durability of Hydr	ated Cement F	Paste for Freeze-7	Thaw Durability	/				
6.5.1.1	Water to Cementitious Ratio	3 <u>7</u>	0.45		Yes	Yes	а	<u>1000</u>			
6.5.1.2	Fresh Air Content	T 152, T 196, TP 118	5 to 8%		Yes	Yes	Choose only	-			
6.5.1.3	Fresh Air Content/SAM	T 152, T 196, TP 118	≥4%; ≤0.20	_	Yes	Yes	one	_			
6.5.2.1	Time of Critical Saturation	ASTM C1585	30	yr	Yes	No	a, b	Variation controlled with mixture proport observation or <i>F</i> factor and porosity meas	tion sures		
6.5.3.1	Deicing Salt Damage		30%	SCM	Yes	Yes	Choose only	Are calcium or magnesium chloride used	l.		
6.5.3.2	Deicing Salt Damage	M 224		Topical treatment	Yes	Yes	one if concrete will be	Are calcium or magnesium chloride used; use specified sealers			
6.5.4.1	Calcium Oxychloride Limit	T 365	<0.15 g CaOXY	/100 g paste	Yes	No	exposed to deicing salts	Are calcium or magnesium chloride used	l.		

Table 2—Specification Worksheet for Mixture Proportioning

AASHTO R101 - Table 2

				6.6 Transport I	Properties			
6.6.1.1	Water to Cementitious Ratio	1 <u>00000</u>	$\leq 0.45 \text{ or } \leq 0.50$	91 days ^c	Yes	Yes	Choose only one	The required maximum water to cementitious ratio is selected based on freeze-thaw conditions
6.6.1.2	Formation Factor	Table 1	≥500 or ≥1000	91 days ^c	Yes	Yes		Based on freeze-thaw conditions; other criteria could be selected
6.6.2.1	Ionic Penetration, F Factor		25 mm at 30 yr	91 days ^c	Yes, F	Through p		
				6.7 Aggregate	Stability			
6.7.1	D Cracking	ASTM C1646, T 161			Yes	No		Procedure A
6.7.2	Alkali Aggregate Reactivity	R 80	4 <u>7—35</u>	2	Yes	No		
				6.8 Worka	bility			
6.8.1	Box Test	TP 137	<6.25 mm, <30% surface void			No		_
6.8.2	Modified VKelly Test	TP 129	15–30 mm/root s			No		<u></u>
Notes:	idea Section (5.1.1 or (5.2.1	11 125	15 So hair foot s			110		

Choose either Section 6.5.1.1 or 6.5.2.1.

^b Choose either Section 6.5.1.2, 6.5.1.3, or 6.5.2.1.

^c Other ages can be used if desired however for SCM sufficient time should be allowed for the pozzolanic reaction.

TRB Circular – PEM State Experiences

- Iowa
- Minnesota
- Wisconsin
- Michigan
- New York
- North Carolina

TRANSPORTATION RESEARCH CIRCULAR Number E-C287 TRANSPORTATION RESEARCH February 2024

> Using Performance Engineered Mixtures to Improve Pavement Performance and Sustainability

> > State Experiences

NATIONAL ACADEMIES Medicine

TREE TRANSPORTATION RESEARCH BOARD

PEM Resources

Performance-Engineered Concrete Paving Mixtures

Final Report December 2022

IOWA STATE UNIVERSITY Institute for Transportation

Sponsored by lowa Department of Transportation (InTrans Project 17-629) Federal Highway Administration Transportation Pooled Fund TPF-5(368)

"Moving Advancements into Practice" **MAP Brief Fall 2023** Best practices and promising technologies that can be used now to enhance concrete paving NATIONAL CONCRETE **PEM Evolution: Then and Now** CONSORTIUM FALL 2023 Introduction

PROJECTTITLE PEM Evolution: Then and Nov AUTHORS Jerod Gross, Soyder & Associates, In EDITORS Oksana Giesema

DESIGNER Alicia Hoerman SPONSORS Technology Transfer Co

Peter Hunsinger

TPF-5(437)

MORE INFORMATION National Concrete Pavement Technology Center 515-294-5798 dfwagner@iastate.edu www.cptechcenter.org/ national-concrete-consortin

Performance-Engineered Mixtures accomplishments, key findings, and (PEM) is an initiative that began implementation of TPF-5(368); and several years ago with discussions provides a look at what is current with between the Federal Highway PEM regarding construction practices Administration (FHWA), American (Figure 1). Concrete Pavement Association (ACPA), and the National Concrete **Problem Statement and** Pavement Technology Center (CP **Project Justification** Tech Center). The goal was to advance State transportation agencies and concrete pavement mixtures toward performance-based specifications with concrete pavement professionals have the main challenge of defining effective traditionally accepted concrete based methods of measuring the performance on measurements like strength, slump and air content. These measurement

This document provides the

background of PEM; outlines the

characteristics of concrete that directly have had very limited correlation to relate to pavement durability and future performance. However, recent structural longevity. Concluding in 2022, TPF-5(368) focused on materials developments in concrete testing technologies have yielded methods and mixtures, while, currently, TPFthat are better predictors of long-term 5(517) focuses on what happens to performance. the mixture after it is delivered to the site. A copy of the final report Performance-Engineered Concrete Paving Mixtures can be accessed here: intrans.

iastate.edu/app/uploads/2023/04/ performance-engineered_concrete paving mixtures w cyr.pdf.

Figure 1. Paving on US 20 using PEM test procedures

National Concrete Pavement Technology Center

U.S.Department of Transportation

Diversified Engineering Services, Inc

41

What is Next? P3C

- Performance Centered Concrete Construction (P3C) TPF-5(517)
- What happens during:
 - Hauling
 - Placement
 - Finishing
 - Curing
 - Sawing

Discussion

Basics of Concrete Pavement Design

National Concrete Pavement Technology Center

Goal of Pavement Design

- Long lasting
- Cost effective
- Constructible
- Safe
- Low maintenance
- Serviceable

It's Not Just Thickness

It's Not Just Thickness

Continuously reinforced

Contraction Joints (Sawed Joints)

Control formation of cracks

Construction Joints ("Headers")

• At the end of a paving run or at an interruption

Expansion Joints

Transverse Joints

- For structures within the pavement
- At Intersections
- Small in-pavement objects

Longitudinal Joints

Service life

- Structural models assume that materials will not fail
- How long need it last?
- Performance:
 - Structural
 - Functional

Age or traffic

Structural – is it broken?

Functional – do I want to drive on it?

Resistance to the environment

- The slab
- The support system
- "Resilience"

Dimensionally stable

- Thermal
- Moisture
- Chemical reactions

Eddyville, Iowa - 1909 Const.

Surface Texture: Balancing Friction and Noise Conventional Tining Dragging Brooming

Innovative

- Grinding (for ride)
- Grooving (for friction/safety)
- Next Generation Concrete Surface

What Do We Have to Think About?

Support system • As is Modified Environment Hot - wet - cold - dry Water table Traffic

- Trucks do the damage
- Fatigue

Pavement Support

Uniformity!

AASHTO 1993 Pavement Design Guide

Construction/materials inputs include:

- Slab thickness
- Concrete strength
- Support (subgrade and base)
- Smoothness

$$\log_{10}(W_{18}) = Z_R \times S_o + 7.35 \times \log_{10}(D+1) - 0.06 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.5-1.5}\right)}{1 + \frac{1.624 \times 10^7}{(D+1)^{846}}} + (4.22 - 0.32p_t) \times \log_{10}\left(\frac{(S_c')(C_d)(D^{0.75} - 1.132)}{215.63(J)\left(D^{0.75} - \frac{18.42}{(E_c/k)^{0.25}}\right)}\right)$$

Mechanistic Empirical

- AASHTOWare ME Design software
 - Based on modelling damage growth
 - Should be locally calibrated
 - Includes BCOA-ME for overlays

PAVEMENT ME DESIGN 3.21 RELEASED A FULL RANGE OF DISTRESS AND PERFORMANCE ANALYSES

- Mechanical Empirical
 - AASHTOWare ME Design software
 - Inputs: truck traffic, climate, soils, water table, CTE, and many more!
 - Adjustments: thickness, mixture, support system, joint spacing

Continuous Improvement

Format, Transfer Functions, and Calibration Coefficients	MEPDG version 1.1	AASHTOWare Pavement ME Design version 2.3.1	AASHTOWare Pavement ME Design version 2.5.3	AASHTOWare Pavement ME Design version 2.6	AASHTOWare Pavement ME Design version 3.0
Application Type	Desk Top Version	Desk Top Version	Desk Top Version	Desk Top Version	Web-Application (Cloud) Version
Output Format	Excel-based	PDF- and Excel-based	PDF- and Excel-based	PDF- and Excel-based	PDF- and Excel-based
Climatic Input Data and Included in Output Summary	Data from Ground- Based Weather Stations; output summary NOT included.	Data from NARR database for rigid and flexible pavements; output summary included.	Data from NARR database for rigid pavements, and MERRA2 database for flexible and semi-rigid pavements; output summary included.	Data from NARR database for rigid pavements, and MERRA2 database for flexible and semi-rigid pavements; output summary included.	Data from MERRA2 database for all pavement design strategies; output summary included.
Axle Configuration Data in Output Summary	Excluded	Included	Included	Included	Included
Special Axle Load Configuration	Included	Excluded	Excluded	Included, but only for Asphalt and Semi-Rigid pavement design.	Included, but only for Asphalt and Semi- Rigid pavement design.
Recalibration of PCC Pavements because of issue with CTE Values in the LTPP Database	Original CTE values in LTPP database	Updated with revised CTE values in LTPP database	Updated with revised CTE values in LTPP database	Updated with revised CTE values in LTPP database	Updated with revised CTE values in LTPP database
Interface Friction between the PCC Slab and Underlying Layer	Constant to a specific age & then no interface friction.	Constant to a specific age & then no interface friction.	Constant to a specific age & then no interface friction.	Constant to a specific age & then no interface friction.	Added NCHRP 1-51; Interface friction varies through design life.

Design Inputs

Design Life:	20 years	Existing Construction:
Design Type:	JPCP	Pavement construction:
		Traffic Opening:

June 2026 September 2026

(lat., long.):

Climate Data Sources 32.5, -86.25

Design Structure		Traffic				
Layer Type	Material Type	Thickness (in) Joint Design			Age (year)	Heavy Trucks
PCC	Default JPCP 1	10	Joint spacing (ft)	15.0	Be (1eai)	(cumulative)
NonStabilized	Crushed gravel (A-1-a)	6	Dowel diameter (in)	1.25	2026 (initial)	2,656
Subgrade	A-1-b (A-1-b)	Semi-infinite	Slab width (ft)	12.0	2036 (10 years)	5,230,070
					2046 (20 years)	11.842,500

Design Outputs

Distress Prediction Summary

Distance Turn	Distress @ Speci	fied Reliability	Reliabilit	Criterion	
Distress Type	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	172.00	79.46	90.00	100.00	Pass
Mean joint faulting (in)	0.12	0.05	90.00	99.99	Pass
JPCP transverse cracking (% slabs)	15.00	3.38	90.00	100.00	Pass

Distress Charts

Pv D

File Location:

Design Inputs

Design Life:	20 years	Existing Construction:		Climate Data Sources	32.5, -86.25
Design Type:	JPCP	Pavement construction:	June 2026	(lat., long.):	
		Traffic Opening:	September 2026		

esign Structure		Traffic					
Layer Type Material Type		Thickness (in)	Thickness (in) Joint Design		Age (year)	Heavy Trucks	
PCC	Default JPCP 1	10	Joint spacing (ft)	15.0	, Be (Jear)	(cumulative)	
NonStabilized	Crushed gravel (A-1-a)	6	Dowel diameter (in)	-	2026 (initial)	2,656	
Subgrade	A-1-b (A-1-b)	Semi-infinite	Slab width (ft)	12.0	2036 (10 years)	5,230,070	
					2046 (20 years)	11.842.500	

Design Outputs

Distress Prediction Summary

Distance Turns	Distress @ Specit	fied Reliability	Reliabilit	Criterion		
Distress Type	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	239.49	90.00	10.71	Fail	
Mean joint faulting (in)	0.12	0.51	90.00	0.01	Fail	
JPCP transverse cracking (% slabs)	15.00	3.38	90.00	100.00	Pass	

Distress Charts

Distress Prediction Summary Distress @ Specified Reliability Reliability (%) Criterion Distress Type Satisfied? Achieved Predicted Target Target Terminal IRI (in/mile) 172.00 239.49 90.00 10.71 Fail Fail Mean joint faulting (in) 0.12 0.51 90.00 0.01 JPCP transverse cracking (% slabs) 15.00 3.38 90.00 100.00 Pass

Distress Charts

PavementDesigner.org

- Combines StreetPave, AirPave, WinPas, PCAPave
- Online tool
- For local agencies

Help (Select Spectrum Type)

The four default traffic categories in the left column are each a composite of data averaged from loadometer tables representative of the facility type listed and the five default traffic categories in the right column are from the forthcoming ACI 330-18 design guide, 'Guide for Design and Construction of Concrete Parking Lots.' ACI 330R-08 describes Category A as passenger cars only, Categories B and C as composites of data averaged from several loadometer tables representing appropriate pavement facilities, and Category D as tractor semitrailer trucks with gross weights of 80 kips (360 kN). The table below gives general details for each default traffic category in the left column.

THE OFFICE	Description		Traffic	Maximum Axles Loads (kips)		
Tranic Gategory	Description	ADT	% Trucks	ADTT**	Single Axles	Tandem Axles
Residential	Residential streets, rural and secondary roads (low to medium*)	50-800	1%-3%	1-20	22	36
Collector	Collector streets, rural and secondary roads (high*), arterial streets and primary roads (low*)	700-5,000	3%-15%	40-1,000	26	44
Minor Arterial	Arterial streets and primary roads (medium*), expressways and urban and rural interstate (low to medium*)	3,000-15,000+	5%-25%	300-5,000+	30	52
Major Arterial	Arterial streets, primary roads, expressways (high*), urban and rural interstate (medium to high*)	4,000-50,000+	10%-30%	700-10,000+	34	60

*The descriptors high, medium, or low refer to the relative weights of axie loads for the type of street or road; that is, "low" for a rural Interstate would represent heavier loads than "low" for a secondary road.

** Trucks -- two-axle, four-tire trucks excluded

Signup

0 Resources

> 0 Support

> > Change Design Type

Constructability Review

- Conducted by people experienced in the field
- Reduces the need to correct things on the fly
- Reviews:
 - Mixture
 - Pavement design
 - Construction processes
 - Traffic control/staging
 - Opening to traffic

Concrete Overlays

Concrete on Asphalt

Concrete on asphalt (COA) overlays can be designed to address a broad range of existing pavement conditions on both composite and full-depth asphalt pavements. Both bonded (COA–B) and unbonded (COA–U) options enable designs to cost-effectively match the condition of the existing asphalt—from deteriorated to good—as well as geometric parameters.

Concrete on Concrete

Concrete on concrete (COC) overlays can be designed for applications on both existing jointed plain concrete pavement (JPCP) and continuously reinforced concrete pavement (CRCP). The predominance of COC overlay designs are unbonded (COC–U) systems; however, bonded (COC–B) applications can be successful, provided the existing pavement is in good condition.

CP Tech Center

Concrete Overlays

Unbonded Concrete Overlays

2007, Route D-Kansas City

Unbonded Concrete Overlays

Unbonded Concrete Overlays

Route D 9,000 ADT 5" Unbonded Overlay Excellent Condition
Mitchell County, Iowa

www.cptechcenter.org/concrete-overlays/

Overlay Applications

Concrete Overlay Performance

Overlay Design

Overlay pavement type

- JCP: for bonded overlays (typically 4" to 6")
- JCP or CRC: for thicker unbonded overlays

Concrete Mixture Design

Same as conventional concrete paving

Concrete placement

- Same as conventional concrete paving
- Curing & sawing critical for thin overlays

Concrete Overlay Thickness Design

- PavementME
- <6" thickness</p>
- Referred to SJPCP/AC (Short JPCP overlay of asphalt concrete pavements)
- Can adjust:
 - Condition of existing pavement
 - Joint spacing of 2' x 2', through 15' x 12'
 - Fibers

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Breakout #1

- 4 Groups
- 15 minutes to discuss the question
- 15 minutes to report back

Breakout #1

• #1

• What defines the quality of a concrete mixture?

Concrete 101

National Concrete Pavement Technology Center

What do we have to work with

Aggregates

- Aggregates comprise ~70% of the volume of a concrete mix
- Aggregate properties can have an influence on concrete properties:
 - Durability
 - Workability
 - Strength
 - Dimensional changes
 - Polishing

Aggregate Types

Aggregates are generally grouped by their mineralogical classification:

- Siliceous
 - Harder
 - Don't polish
 - Prone to ASR
- Calcareous
 - D-Cracking

Aggregates in Concrete

- Physical properties to consider:
 - Gradation
 - Workability
 - Absorption
 - Water in the mix
 - Particle shape
 - Workability
 - Flexural strength
 - Surface texture

Voids

Aggregate Gradation

• ASTM C33

Aggregate Gradation

Aggregate Gradation

Combined gradation matters

Absorption

- A function of the amount and connectivity of void space in the aggregate
- Saturated surface dry (SSD) used in proportioning

Aggregate Durability Issues

Aggregate-related distresses include the following:

- Alkali-aggregate reactivity (ASR / ACR)
- D-cracking
- Surface popouts
- Polishing

Dowel Bars

Smooth bars to provide load transfer across transverse joints

- Round dowels are typically
 - $1\frac{1}{4}$ to $1\frac{1}{2}$ inches in diameter
 - 15 to 18 inches in length
 - Spaced 12 to 15 inches apart
- GFRP are available
- Elliptical, flat and square dowels are available

Tiebars

- Deformed bars to hold lanes together at longitudinal joints
- Tiebars are sized depending on loads

Reinforcement

- To hold random cracks closed
- Continuously reinforced concrete pavement uses ~0.7 percent
- Reinforcement may be
 - Plain steel or epoxy coated
 - Reinforcing bars or welded wire fabric

Curing

- Curing compound is applied to all exposed surfaces to retain moisture
- Should be applied as soon as practical after finishing
- Should be white
- Poly-alpha-methylstyrene is effective
- Alternatives are water fogging, plastic sheeting, ponding

Reactive Materials

- Cementitious materials
- Water
- Chemical admixtures

Cementitious Materials

Specifying Cements

- Portland cement (ASTM C 150 / AASHTO M 85)
- Blended cements (ASTM C 595 / AASHTO M 240)
- Performance specification for hydraulic cements (ASTM C 1157)

Limits for Constituent Amounts for Blended Cement						
Cement Type	IL	IP	IS	IT	IT(S≥70)	IC
Limestone (L)	>5%, ≤15%	≤15%	≤15%	≤15%	≤15%	≤ 30 % ^D
Pozzolan (P)	0	≤40%	0	≤40%	С	D
Slag (S)	0	0	≤95% ^A	В	А	D
Limestone + Pozzolan + Slag				<70%	≤95%	≤70%
Number of pozzolan or slag						
constituents	0	1	1	2	2	

Manufacturing Portland Cement

- Grind the raw materials (limestone, clay, iron ore)
- Blend
- Heat
 - Preheater
 - Kiln (2700 °F)
- Cool (clinker)
- Grind with gypsum, and LS
- Ship

PCA

Supplementary Cementitious Materials

- Fly ash
- Slag
- Natural pozzolan
- Silica fume

Specs for Cementitious Materials

- Fly ash and Natural Pozzolans ASTM C618
- Slag ASTM C989
- Silica Fume ASTM C1240

• Specs are changing fast...

Typical Amounts of Pozzolans and Slag

- 15% 25% • Class F fly ash:
- Class C fly ash:
- Slag: 25% - 50%
- Silica fume:

6% - 8%

15% - 40%

So What Do They Do?

- SCM's change the mix properties
- Finishing and curing needs to adjust
- Strength rate slows
- Permeability decreases (good)

Mixing Water (ASTM C 1602)

- Potable: use
- Non-potable: test and use
 - Strength
 - Time of set
 - Chlorides
 - Sulfates
 - Alkalis
 - Total solids

Water

- Sources
 - Added with batch
 - With aggregates
 - In chemical admixtures
 - Added later

Effects of Extra Water on Concrete

- Increases workability
- Lowers strength
- Increases drying shrinkage
- Increases permeability and reduces durability

Control w/cm!!!

Chemical Admixtures

- Air entraining admixtures (AEA)
- Water reducers
- Set modifying admixtures
- Rheology modifiers
- Hydration modifiers
- Others

 Make good concrete better Not to fix bad concrete

Basics of Cement Hydration

National Concrete Pavement Technology Center

Cement Hydration

Hydration is a series of irreversible chemical reactions between hydraulic cement and water

Why Should You Care?

- Early reactions affect workability, finishing and sawing
- Later reactions affect long term performance
- Understanding helps wise decisions
- It is complicated...

Five Stages of Hydration

How SCMs Work

Effects of SCMs

- Delayed final set
- Reduced heat peak
- Extended heat generation
- Increased long-term strength
- Reduced permeability

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Mixture Properties

- Fresh
 - Workability*
 - Segregation
 - Bleeding
 - Setting
- Hardened
 - Strength and Stiffness*
 - Shrinkage and Cracking*
 - Air void system*
 - Permeability*

Workability

- Ease of mixing, placing, consolidating, and finishing
- Measure of uniformity
- Affected by mixture, environment, time

Segregation, Bleeding, Setting

- Affects finishing
- Affected by
 - Aggregate gradation
 - Weather

Strength and Stiffness

Significance

- To carry loads...
- No longer a good correlation with "quality"
- Strong in compression, less so in tension
- Higher stiffness increases cracking risk

Factors

- w/cm
- Degree of hydration
- System chemistry
- Interfacial zone
- Air

Shrinkage

Change in volume due to moisture loss

- Significance
 - Cracking
 - Warping

Air-Void System

Why?

Frost resistance

What are we looking for?

- 9% expansion
- Air void system is more important than total air content

Transport

The ease with which fluids can penetrate concrete

Significance

• All durability damage is governed by permeability

- Factors
 - w/cm
 - SCM type and dose
 - Hydration
 - Cracking

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Alternative Cementitious Materials

National Concrete Pavement Technology Center

Why?

- Reduce costs
- Reduce dependence on imports
- Reduce CO2

Alternative Cements

Ecocem

- Contains high levels of limestone as well and slag
- Solidia
 - "Lower proportion of limestone and lower production temperatures"
- CarbonBuilt
 - "Patented materials" cured in CO2
- Brimstone
 - Portland cement from calcium silicate
- Sublime
 - "Produce portland cement from non-carbonate rock by proprietary electrical-chemical processes"
- ... and many others

Alternative SCMs

- Supplementary cementitious materials
 - Traditional SCMs
 - Ternary combinations
- Other SCMs
 - Recycled Ground Glass, ASTM C1866
 - Locally processed waste products
 - Harvested fly ash
 - Colloidal silica
 - Iron slag

Alternative SCMs

- New SCMs
 - Carbon Upcycling
 - Grind materials in presence of CO2
 - TerraCO2
 - Synthetic fly ash
 - Carbon Limit
 - Non-calcined mineral admixture with catalyst
 - Fortera
 - Reactive calcium carbonate

Carbon Upcycling

MNRoad

- Why build it
- What we did
- How its going

Why build it

- FHWA and SHA's are looking to reduce embodied carbon costs
- A variety of systems are being developed and marketed
- But:
 - Can we build with them?
 - Do they work?
 - Do they last?

- MNDOT / NRRA agreed to open 24 cells on I94 at MNRoad
- A committee set broad guidelines
 - Enough to build 250 feet of pavement
 - Batch in a ready-mix plant
 - Run through a slipform paver
 - Meet R101 performance metrics
 - Trial batches required
 - Standard design 270' x 29' x 7.5"
 - Same foundation system

- The plan:
 - 1 control cell
 - Type IL cement
 - 570 pcy cementitious
 - 30% Class F fly ash
 - 0.40 w/cm
 - 1 optimized mixture
 - Optimized gradation
 - 500 pcy

- The plan:
 - 7 alternative (nominal) SCM cells
 - Carbon Upcycling fly ash ground in CO2 (500 pcy)
 - Urban Mining recycled glass (570 pcy)
 - Terra CO2 manufactured fly ash (570 pcy)
 - Carbon Limit limestone + natural pozzolan (570 pcy)
 - Hess Pumice (570 pcy)
 - 3M shingles dust (570 pcy)
 - Burgess metakaolin (570 pcy)

- The plan:
 - 3 alternative cements
 - Ash Grove 30% calcined clay (570 pcy)
 - Continental 20% limestone (570 pcy)
 - Ultrahigh Materials non-portland cement (650 pcy)
 - 4 Carbon Injection cells
 - MNRoad mix with and without CO2 (570 pcy)
 - Optimized mix with and without CO2 (558 pcy)

- The plan:
 - Control
 - 2 Microsphere cells
 - Ash Grove LC³
 - Type IL + slag + fly ash + natural pozzolan
 - Slag cement + activator
 - Holcim Ternary
 - Ozinga 1157 cement

Watched placeability

- Tested
 - Fresh properties
 - Hardened properties
 - Durability properties

- Sensors
 - Strain
 - Moisture
 - Soil suction
 - Frost sensing
 - Joint opening
 - Temperature
 - Dynamic pressure
 - Displacement
 - Joint movement

- Monitor
 - Surface
 - Ride
 - Cracking
 - Distress

How Its Going

- Preconstruction
 - Availability
 - Delivery of materials
 - Supersacks are a pain
 - Not all were uniform

How Its Going

- Construction
 - Some systems went down easily
 - Others less so
 - Slump loss was different
 - Response to admixtures was different
 - Response to vibration was different

Testing

VKelly = 0.60

VKelly = 0.46

Testing

How Its Going

- Strength
 - Most achieved 3500 psi at 28 days, all at 56 days
- Resistivity
 - Most achieved 20 kohm-cm at 28 days, all at 56 days
- Freeze thaw
 - Mixed lab findings

Annual Reviews

- Some grinding needed for texture
- Some minor spalling
- All seemed to survive the winter(s)

So...

- Some systems are closer to being ready for prime time
- Trial batches / placements are not optional
- Water control is critical
- Fresh behaviors are different
- Hardened properties can be OK
- Durability is OK (so far)
- Same'ol, Same'ol ain't the same

Impacts

- What metrics do states use to decide whether to add a new cement / SCM to their approved materials list?
- What tools can states use to monitor acceptability / uniformity of cements / SCMs being delivered to a site?
- How do concrete suppliers a develop mixtures made with new cements that meet concrete performance requirements/
- How do concrete contractors work with mixtures made with cements / SCMs/

Impacts

- Not bad but different
- We will have to learn to:
 - Accommodate differences
- Exciting times!

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Mixture Proportioning

IOWA STATE UNIVERSITY

Institute for Transportation

National Concrete Pavement

Technology Center

Preconceptions

- Who cares about the concrete as long as it is gray, cracked and hard?
- More cemen = more strongt
- Strength is everythip
- Slump indicates chality
- Gradations of Malividual argregate fractions are critical

What is Good concrete?

What do we need?

- Transport properties (permeability)
- Aggregate stability
- Cold weather resistance
- Strength
- Shrinkage
- Workability

Proportioning Approaches

Do what we did last time

Proportioning Approaches

- Structural concrete
- Other concrete
- Waterproof concrete

1:3:6 Add salt

1:2:4

- No chemicals
- No SCMs
- Precision was ugly
- Bulking made it worse

Proportioning Approaches

- ACI 211 1991 2022
- Developed
 - Before water reducers
 - Before supplementary cementitious materials
- Primarily focused on structural concrete
 - 100 mm (4") slump
 - 30 MPa (~4000 psi)

Workability

Workability

Proportioning

What controls performance?

		Workability	Transport	Strength	Cold	Shrinkage	Aggregate
					weather		Stability
Aggregate System	Type, gradation	$\checkmark\checkmark$	-	-	-	-	√ √
Paste quality	Air, w/cm, SCM type and dose	~	√ √	√ √	√ √	✓	✓
Paste quantity	Vp/Vv	~	-	-	-	√ √	-

Proportioning

Step 1 Paste Quality

- Binder type
 - Cement type
 - SCM type and dosage
- w/cm
 - Choose for performance
 - System chemistry
- Air void system
 - Small bubbles close together
 - Stable

Step 2 Aggregate system

• Choose an aggregate system...

Step 2 Aggregate system

• Choose an aggregate system...

Step 3 Paste Content

Typically Volume of paste ~150-200% of voids

Step 3 Paste Content

- Need a minimum paste for workability
- Excess has a:
 - Small negative effect on strength
 - Negative effect on permeability, shrinkage, cost
 - Negative effect on sustainability
- "Optimum" depends on:
 - Aggregate type
 - Gradation
 - Binder type

Ongoing Work

What void ratios are needed for:
Varying aggregate mineralogy
Varying aggregate form
Varying gradation

Doing the Sums

The wonders of a spreadsheet and a solver function...

Doing the Sums

The wonders of a spreadsheet...

Paste Quality					National Concrete Pavement			
Project	Gravel 1"		5/15/20	17	Tech	hnology Center		
Materials								
		Targets						
			R.D.				Tech Center	
Cement	Type I		3.15					
SCM 1	F Ash		2.65			~ **		
SCM 2	Slag		1.00		IOW I	IOWA STATE UNIVERSITY		
Coarse Agg	A85006		2.72				IT DIGITI	
Fine Agg	A25518		2.66		Institu	ute for Transportatio	on	
Intermediate	A85007		2.43					
Water			1.00					
						Blue= Input Data		
Cementitious		428	pcy			Red = Calculation	Don't touch!	
w/cm		0.42				Yellow = Output	Don't touch!	
Air %		5.0	%			Black = Working	Don't touch!	
% SCM 1		20	%					
% SCM 2		0	%					
Voids in aggregat	te	25.3	%					
Required Vp/Vv		125	%					
Strength		40	000 psi	7 days				
RCP		1500 coulomb		56 days				
Wenner			27 kΩ-cm	28 days				

Doing the Sums

The wonders of a spreadsheet...

Mixture Proportions						National Concrete Pavement			
Project	Gravel 1"		5/15/201	17		Techr	hnology Center		
Mixture Propor	tions								
		Targets		Actual					
			Pounds	R.D.	Volume			Tech Center	
Cement	Type I		342	3.15	1.74				
SCM 1	F Ash		86	2.65	0.52		C		
SCM 2	Slag		0	1.00	0.00	IOWA	A STATE UN	IVERSITY	
Coarse Agg	A85006		1753	2.72	10.33	In colored			
Fine Agg	A25518		1318	2.66	7.94	Institut	e for Transportatio	on	
Intermediate	A85007		340	2.43	2.24				
Water			180	1.00	2.88				
Air %			5.0		1.35		Blue= Input Data		
			4019		27.00		Red = Calculation	Don't touch!	
							Yellow = Output	Don't touch!	
Cementitious		428	428	pcy			Black = Working	Don't touch!	
Volume of paste			24.0	%					
Volume of aggs			76.0	%					
Volume of voids			19.2						
vp/vv		125	125.0						
w/cm		0.42	0.42						
% SCM 1		20	20	%					
% SCM 2		0	0	%					
Mass aggs		3411	3411	pcy					
Excess paste, %			4.8	%					

Trial Batches

- Workability / Admixture dosages / Void ratio
- Air void system
- Setting

- Strength gain
- Permeability

Does it Work?

MNRoad

	MNDOT	Optimized
Cement	400	351
SCM 1	170	150
SCM 2	0	0
Coarse Agg	457	662
Fine Agg	1171	1303
Intermediate 1	1167	954
Intermediate 2	244	254
Water	228	200
Air	7.0	7.0
Total	3837	3874
Cementitious	570	501
vp/vv	208	180
w/cm	0.40	0.40
% SCM 1	30	30

What to Specify?

- Not
 - Slump
 - Cement content
 - Individual aggregate gradations
- Maybe
 - w/cm
 - Air void system
 - Paste content
- Definitely
 - Enough strength (and no more)
 - Transport
 - Uniformity
 - Aggregate stability

QC

- Materials
- Dosages
- Aggregate moisture
- Workability
- Unit weight
- Resistivity

What to Accept?

- Watch
 - Water
 - Cementitious system
 - Uniform workability
- Test
 - Air
 - Resistivity
 - (Strength)

But Wait – There's More

- New materials are coming
 - Harvested fly ash
 - LC3
 - 50% clinker
 - Other powders
- Design assumptions may need to change
 - Shrinkage
 - Modulus of elasticity
- Construction practices may need to change
 - Finishing
 - Curing
 - Sawing

Where next?

- Learning and thinking required
- Target the properties you need
- Do those trial batches
- Stay away from the cliff edge
- Help is available...

Construction

National Concrete Pavement Technology Center

Construction

- Subgrades
- Bases
- Concrete

Subgrade

Existing material

- Desired:
 - Uniformity
 - Stability
 - Some stiffness
 - Drainage

Soft spot

Hard spot

Soils

- Gravel and sand
 - Good shear strength
 - Low compressibility
 - High permeability
 - Good workability
- Silt
 - Poor shear strength
 - High compressibility
 - Low permeability
 - Poor workability

Clay

- Structures are flat and platy
- Highly influenced by water
- Significant volume change

³ ⁄ ₄ Gravel	>4.75mm
Sand	4.75 to 0.075 mm
Silt	0.075 to 0.002 mm
Clay	< 0.002 mm
Rutting & Pumping

Rutting

- Subgrade non-uniformity
- Pumping
 - Displacement of soil and water under load
 - Leads to displacement of soil and so loss of support

Stabilization

• Purpose

- Improve strength (not too strong)
- Reduce swelling
- Provide construction platform
- Provide uniformity

Halsted et al. 2008, © 2008 PCA

Stabilization

- Accomplished using
 - Cementitious materials
 - Cement Stabilized Soils (CSS)
 - Lime, fly ash, others
- Often better option than core-out and replace

CSS Reclaimation

Proof Rolling

- To locate soft areas not detected in the grade inspection
- Heavy, pneumatic-tired vehicle on the prepared grade – observe for rutting or deformation
- Recommended if an unstabilized base is to be use
- MassDOT Section 150.61
 Preparation of Foundation Areas

Geogrid

- High strength polymer material
- An alternative to chemical stabilization
 AASHTO M 288

Source: Geofabrics

Construction

- Subgrades
- Bases
- Concrete

Base

A layer between the subgrade and the concrete

- To provide support
 - Uniform, stable, stiff, draining
- Stable platform for construction
- Provides drainage

Types

- Unstabilized (limit <#200 material)
 - Recycled concrete
 - Crushed limestone
 - Mixture of gravel, sand, soil
 - Lean concrete
- Stabilized

Base

Stability should not be sacrificed for the sake of drainage
Fines content

Improved Performance with Base

Improved Performance with Base

Modeling – PavementME

Field Data

Trackline

- ~3ft wide additional base
- Path for the paving machine
- Improves smoothness
- Support for shoulders or curbs

What other areas at the paving site need to be stable and maintained?

Why do we do this?

- Why do we sprinkle the subbase with water?
- We want to make sure the support layer doesn't pull water out of the mixture

Construction

- Subgrades
- Bases
- Concrete

Field Verification

- Test mixture properties (before and during construction)
- Use production equipment
- Follow specified testing frequencies

Concrete Production

Plant location

- Safety
- Materials delivery
- Concrete delivery
- Site suitability
- Testing
- Operation
- Environmental impact

Plant Checklist

- Stockpiles for separation and drainage
- Check scales
- Check water meter
- Check for leakage
- Check capacity of boilers and chillers
- Check admixture dispensers
- Check mixers for hardened concrete

- Inspect concrete hauling units for cleanliness
- Check to ensure that all materials have been approved (and labeled)
- Set up stockpiling operations
- Review aggregate moisture tests
- Observe batching operations

Does MassDOT have a concrete plant checklist?

Handling Materials

- Control
 - Cementitious materials
 - Dry and cool
 - Avoid putting the wrong product in the wrong silo
 - Aggregates
 - Segregation
 - Crushing
 - Moisture uniformity
 - Mud balls
 - Admixtures
 - Store as recommended

Batching

- Calibrate scales
- Adjust batching sequence
- Avoid segregation
- Adjust for moisture variations
- Adjust for weather
- Retempering? No

Concrete Mixing and Delivery

Mixture must be thoroughly mixed

- Uniform batch
- Air has been entrained
- Depends on equipment and mixture

Batch rate to match paving rate

Place the right amount in front of the paver

Allow for changes during transport Allow for traffic

Field Adjustments

- Ambient temperatures
 - Hot = Fast
- Material variability
- Material supply changes
 Not all fly ash is the same
 - Know your likely sources
 - Have a back-up plan

Fixed Form

- Good for short sections and odd shapes
- Placed using:
 - Self propelled vibratory screeds
 - Tube finishers
 - Form riding machines
- Keys
 - Uniform concrete placement in front of machine
 - Avoid using vibrator to move concrete

Slipform Paving

- Good for long sections and smoothness
- Concrete is extruded
 - Spreader
 - Strike off plate
 - Vibrators
 - Tamper bar
 - Profile pan
- Followed by
 - Texture machine
 - Curing cart

Slipform Paving

Slipform Paving

Consolidation

- The vibrators on the paver fluidize the concrete
 - Too much impact air void system
 - Too little unconsolidated sections
 - •~5000 8000 vpm
- Vibration effort must be tied to paver type and speed
- Adequate consolidation required
 - Especially around dowels and tie bars
- Vibrator monitors are recommended

MassDOT Section 476.39.E.2

Stringlines

- Control steering and elevation of the paver
- Effect pavement thickness and smoothness
- Beware the person who bumps it

ACPA 2003b, used with permission

Stringless Paving

- Reduced clutter
- Safety
- Smaller footprint
- Total station based
- Requires a 3D model

Dowel Bars

- Smooth bars in transverse joints
- To provide load transfer
- To limit faulting
- Pre-placed bars
 - Staking is required
 - Location is important
- Inserted bars
 - Mixture may affect ability to place

Dowels? Alignment?

Are we in spec.?

Tiebars

- Deformed bars in longitudinal joints
- To prevent slabs separating
- To promote aggregate interlock

Bars

- Evaluation
 - MIT-Scan2
 - Data results without shipping wires cut

Finishing

- Hand finishing should be limited
- Hand finishing can help correct bumps
- Don't add water!

Texturing

- Provides friction and skid resistance
 - Drag textures
 - Longitudinal tining
 - Transverse tining
 - Diamond grinding
- Affects noise
 - Minimize positive texture

Texturing Equipment

- Texture
- Burlap Drag microtexture

Texturing Equipment

Texture

Turf Drag
 microtexture

Texture & Noise

Smoothness

- Used as a measure of pavement condition
- Affected by
 - Foundation system
 - Surveying
 - Machine control system
 - Mixture
 - Stopping and starting
 - ... everything

Smoothness

- Measurement
 - Inertial profiler
 - Real time smoothness

Smoothness

- In most cases, smooth pavements last longer
- Mixture factors
 - workability, finishability, edge stability, uniformity
- Paving factors
 - design (Staging, schedule, geometry)
 - project (paving sequence track line clearance)
 - equipment
- Human factors
 - experience, training, communication, fatigue

Implementation of Best Practices for Concrete Pavements

Guidelines for Specifying and Achieving Smooth Concrete Pavements

Final Report December 2019 National Concrete Pavement Technology Center

Sponsored by Federal Highway Administration Office of Infrastructure IOWA STATE UNIVERSITY

Curing

• Keep it wet, keep it warm

- Curing compound
 - Reduces the rate of moisture loss
 - Needs complete coverage (2 coats)
 - More needed for rough surfaces
 - PAMS
- Plastic sheeting
 - Beware of wind tunnels
 - Can mar the surface

Weather Considerations

- Hot weather concreting
 - Hydration is faster
 - Evening cold fronts can set up thermal stresses
- Cold weather placement
 - Set is delayed but shrinkage isn't

Rain

• The surface may be compromised

Crack Risk Analysis with HIPERPAV

- Free to download
- Factors considered in the program
 - Temperature
 - RH
 - Shrinkage
 - Restraint
 - Strength, MOE
 - CTE

Concrete will move $\sim 2/3$ inch over a distance of 100' with temperature change of 90 deg. F

Elasped time since construction, hours

Maturity Method

NEW AASHTO T413 – Maturity Method (update from T325)

- Beams or Cylinders
- Minimum 2 samples at 4 ages
- First test within 24 hours, as early as 18 hours
- First test must be less than 85% of target opening strength
- Permitted to use production concrete
- CP Tech Webinar: Estimating Opening Strength for Concrete Pavement Using Maturity

NRRA Research

MnRoad research on early loading (2017) • ³/₄ ton pickup truck at **2 hours** (73 psi):

https://www.youtube.com/watch?v=ZyNy2UA9mSs

Report No. NRRA202112 Images: MnDOT

NRRA Research

"Web-based tool"

MnDOT Study - TPF-5(341), Evaluation of Long-Term Impacts of Early Opening of Concrete Pavements August 2021

Joint Sawing

Saw timing

- Sawing window
- When is it too early / too late?
- Size 12 boot
- UPV
- Effect of weather
- Effect of mixture

Joint Sawing

- Equipment
 - Conventional
 - May need to be sawing overnight
 - Deeper for longitudinal & transverse doweled joints (T/3)
 T/2 for placed thickness (superclayed ion example)
 - T/3 for placed thickness (superelevation example)
 - Shallower for un-doweled joints (T/4)
 - Early entry transverse only
 - Choose the right blade
 - Maintain shoe/skid plate
 - Tricky with hard aggregates
 - Shallower cut (1 1/4" +/- 1/4")

Joint Sawing

Why saw?Control random cracking

Joint Sealing / Filling

- Minimize infiltration of water
 - Ensure water that penetrates can get away
- Prevent hard materials in the joint
- Maintenance is required

 Table 8-8. Potential joint performance based on sealing option

	STREETS/ROADS/HIGHWAYS								
			Any posted	speed limit (t (unless indicated by note)				
Layer below slab	Den	se-graded bas	e or subgrade	e soil	Nonerodible (2) or free-draining layer (3)				
Climatic zone	Dry no-freeze		Other		Dry no-freeze		Other		
Joint spacing	<u>≤</u> 6 ft	> 6 ft	<u>≤</u> 6 ft	> 6 ft	≤ 6 ft	> 6 ft	≤ 6 ft	> 6 ft	
Open reservoir cut	NR	NR	NR	NR	NR	NR	NR	NR	
Open narrow saw cut				NR			(4,5)	(5)	
Filled saw cut or reservoir		1	(6)	(6)			(6)	(6)	
Sealed saw cut or reservoir		н.			I.			1	

TERCITOR DATE:

Technical Bulletin

INTRODUCTION

Joint sealant use dates back to the early 1900s. Through years of technical development and field application two basic approaches emerged, joint filling and joint sealing. An additional approach of leaving pavement joints open (unsealed) has also been applied. This bulletin discusses the proper consideration of joint sealants and fillers, and provides details on proper installation.

Concrete Pavement Joint Sealing/Filling

Sealing or filing transverse and longitudinal joints in concrete pavements is an important consideration for long-term pavement performance. For most pavement applications proactively sealing or filing joints provides a measure of added protection against potential problems, such as spalling, baselsubgrade softening, dowel bar corrosion, pavement joint blow-ups, and even some material-related distresses. However, to gain these benefits the installation and maintenance of the sealant/filtem must be performed with care.

Joint sealing involves a backer rod and more rigorous preparation of a sealant reservoir than joint filling, which often simply requires filling up a joint saw cut with sealant material after some prior preparation.

The purpose of joint sealing is to minimize infiltration of surface water, deicing chemicals and incompressible materials into joints. The purpose of joint filting is similar, but because the reservoir is often narrower, more difficult to clean and does not control shape factor, it may be more difficult to clean and desen not another that emphasizes limiting incompressible material entry with slightly less regard for moisture entry into a joint. (Figure 1, next page, provides the basic cptions.)

TB010-2018 Wikipave.org

base layer softening, erosion and pumping of subgrade or base fines. Such a degradation of support to pavement stabs causes higher load stresses in the concrete, pavement settlements, corner cracks and/or faulted transverse or longitudinal joints (1). Unfortunately, it is not practical to construct and continually main-

Sealing Considerations - Water can contribute to subgrade or

h years of tain a completely watertight portaches and fillers, the pavetel paventil portaches and fillers, the pavetel pavetrial pavetr

related problems.

In addition to addressing water passage, sealing or filing joints also prevents incompressibles from entering joint reservoirs. Incompressibles (sand or other small, hard particles) are known to contribute to spalling and in extreme cases may cause slab migration that induces pavement "blow-ups" (2). In either case, excessive pressure along closing joint faces results when incompressibles obstruct slab expansion in hot weather (3).

ACPA

Joint Sealing / Filling

PCC Paving Field Inspection 2025

Iowa Department of Transportation Construction and Materials Bureau Technical Training and Certification Program

Discussion

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Breakout #2

- 4 Groups
- 15 minutes to discuss the question
- 15 minutes to report back

Breakout #2

• #2

• What should inspectors be looking for?

National Concrete Pavement Technology Center

Why Test?

- Three criteria:
 - Quality Characteristics (What do we want?)
 - Quality Measures (How do I measure it?)
 - Quality Limits (How much is enough?)

What is Good concrete?

- Constructible (Workable)
- Dimensionally stable
 - Aggregates
 - Shrinkage
- Impermeable (Transport properties)
- Cold weather resistant
 - Freeze thaw
 - Salt attack
- Strong (enough)

Workability

- Slump
 - Great for uniformity
 - Cheap, fast and familiar
 - 1" ± 1"
 - Does not tell about response to vibration
 - QC

Workability

- VKelly
 - Does tell about response to vibration
 - Adjust aggregate gradation and paste content to achieve desired numbers
 - Prequalification

VKelly

- Measure initial slump (initial penetration)
- Start vibrator for 36 seconds at 4000 vpm
- Record depth periodically
- Plot on root time
- Calculate slope = VKelly Index

• Finishability

Workability

- Box
 - Does tell about response to vibration
 - Adjust aggregate gradation and paste content to achieve desired numbers
 - Subjective
 - Prequalification

Workability

- What if it is bad?
 - Aggregate gradation (Tarantula)
 - Paste content
 - Admixture choice and dosage
 - Cementitious system
 - Don't add water!

Aggregate Stability

- Alkali aggregate reaction
 - AASHTO R80 / ASTM C 1778

Aggregate Stability

- What if it is bad?
 - Change aggregates
 - If alkali reactive, investigate SCM dosage
 - ASTM C1260 for the individual aggregates
 - ASTM C1567 for the concrete mix

Shrinkage

- Paste content (read the batch sheet)
 - Easy
 - Fast

Project	Gravel 1"		5/15/2017		
Mixture Proport	tions				
_		Targets		Actual	
			Pounds	R.D.	Volume
Cement	Type I		342	3.15	1.74
SCM 1	F Ash		86	2.65	0.52
SCM 2	Slag		0	1.00	0.00
Coarse Agg	A85006		1753	2.72	10.33
Fine Agg	A25518		1318	2.66	7.94
Intermediate	A85007		340	2.43	2.24
Water			180	1.00	2.88
Air %			5.0		1.35
			4019		27.00
Cementitious		428	428	рсу	
Volume of paste			24.0	/0	
Volume of aggs			76.0	%	
Volume of voids			19.2		
vp/vv		125	125.0		
w/cm		0.42	0.42		
% SCM 1		20	20	%	
% SCM 2		0	0	%	
Mass aggs		3411	3411	pcy	
Excess paste, %			4.8	%	

Shrinkage

- Ring test
 - Indicates cracking risk starting from minutes after mixing
 - Tricky
 - Poor repeatability
 - ASTM and AASHTO methods are not the same

Shrinkage

- What if it is bad?
 - Reduce paste content
 - Check clay content of aggregate
 - Consider internal curing
 - Consider shrinkage reducing admixtures

Water Content

- Record batch ticket and aggregate properties
- Make and weigh 6"x 3.75" cylinder (1640 cm3)
- Dump cylinder into pan and weigh
- Heat for 15 min
- Weigh pan

Transport

Resistivity

- Curing: Fog room
- Pull out at desired age
- Read and put back
- Repeat

Transport

- What if it is bad?
 - Review w/cm
 - Review SCM type and dose

Cold Weather

- Freeze-thaw
 - Saturation
 - Entrained air
- De-icing salts
 - Sufficient SCM

Super Air Meter

- Reports an index that correlates with F/T performance
- Training and machine maintenance are critical
- Prequalification
- QC
- Acceptance (later)

Strength

- Strong enough to carry loads
 - Cylinders
 - Beams
 - Maturity
- Prequalification

Maturity

- Maturity readings
 - Sensors in the pavement determine in-place maturity and thereby strength for opening
 - AASHTO T413

Foam Drainage

- Assesses stability of air void system
- Depends on system chemistry
- Prequalification

Calorimetry

- Calorimetry tells us about
 - The chemistry of the system (Uniformity)
 - Set time

Unit weight

UniformityAffected by air and water

Other Parameters

Other Parameters

Saw timing

Bars

Evaluation

- MIT-DOWEL-SCAN Dowel Bar Scanner
- No need to cut shipping wires

Thickness Measurement

- Cores
- Probing
- MIT-SCAN-T3
 - Within ± 0.1 inch of core thickness

Smoothness

- Measurement
 - Real time smoothness
 - Inertial profiler

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Quality & Inspection

National Concrete Pavement Technology Center

Outline

- What is quality?
- Who cares?
- The Agency
- The Contractor
- Inspection

Defining Quality

- Simple Definition (Philip Crosby)
 - Quality: "Conformance to requirements"
 - Quality is defined by our customers
- QA = "Making sure the quality of a product is what it should be"

Why Should I Care

- Traditional Position: Money!
 - Penalties vs Incentives
 - Contractor has to make money to be in business
- It is not just about the money!!
 - Reputation
 - Staff
 - Equipment

CONTRACTOR

Why Should I Care

- Better working environment
 - Project partners are qualified
 - Contractor knows how the Agency will accept/pay for the product
 - QC Plans remove some of the daily stress
- Product you paid for

Quiz

Which of the following people affect quality?

- Designer/Specifier
- Agency Inspector
- QC Technician
- Loader Operator at the concrete plant
- Truck Driver
- Paver Operator
- Concrete Finisher
- Texture/Cure Machine Operator

Core Elements of an Agency QA Program

The Goal...

Building Blocks

- Agency Acceptance Measuring the things that matter
- Contractor Quality Control Material and Process
- Qualified Laboratories Testing
- Qualified Personnel Sampling and Testing
- Independent Assurance Sampling and Testing
- Dispute Resolution Sampling and Testing

Acceptance

- Agency to carry out all acceptance activities
 - Inspection
 - Equipment
 - Environmental Conditions
 - Materials
 - Product Workmanship
 - Testing

Point of Acceptance

- The contractor's concrete until the agency tests it
- Are you testing the final product?

Contractor's concrete Common point of acceptance This is what counts!

Quality Control

- Contractor's QC system should address:
 - Materials production processes
 - Materials transportation and handling
 - Field placement procedures
 - Calibration and maintenance of equipment
 - Watching the process
 - Fixing the process

Quality Control

- Aim of QC is assure contractor that the mixture is going to be accepted.
- A QC plan should include
 - Unit weight
 - Calorimetry
 - Maturity
 - Strength development
 - Air void stability
 - Thickness
 - Ride

Control Charts

- Track data over time
 - Warning limit
 - Action limit
 - Watch for out-of-control conditions

How Do We Evaluate the Mixture?

- Measure everything during prequalification
 - Constructible (Workable)
 - Dimensionally stable
 - Aggregates
 - Shrinkage
 - Impermeable (Transport properties)
 - Cold weather resistant
 - Freeze thaw
 - Salt attack
 - Strong (enough)

Concrete property	Test description	Test method	Comments
	Aggregate gradation	ASTM C136/AASHTO T 27 ASTM C566/AASHTO T 255	 Use the individual gradations and proportions to calculate the combined gradation
	Combined gradation	Tarantula curve	Adjust combined gradation to achieve optimum workability
Workability	Paste content	Batch sheet	 Adjust paste content to find minimum paste needed while still workable Confirm that total is below maximum permitted for shrinkage
	VKelly or Box	AASHTO TP 129/PP 84 X2	 Confirm that the mixture responds well to vibration Adjust aggregate gradation and water content to achieve desired performance
	Slump at 0, 5,10,15, 20, 25, and 30 minutes	ASTM C143/AASHTO T 119	 Look for excessive slump loss due to incompatibilities, which is more likely at elevated temperatures Determine approximate water-reducing admixture (WRA) dosage
	Segregation	—	 Look for signs of segregation in the slump samples
Air void	Foam drainage	-	 Assess stability of the air-void system for the cementitious/admixture combination proposed Select alternative admixture combinations if instability is observed
	Air content	ASTM C231/AASHTO T 152, T 196	 Determine approximate air-entraining admixture (AEA) dosage
system	Super Air Meter (SAM)	AASHTO TP 118	• < 0.2 target
	Clustering	Retemper a sample and use optical microscopy to assess clustering	 This can affect strength Air content can also jump with retempering
	Hardened air	ASTM C457	Assess compliance with specification
Unit weight	Unit weight	ASTM C138/AASHTO T 121	 Indicates yield of the mixture and provides a rough estimate of air content Establish basis for QC monitoring
Strength	Compressive or flexural strength	ASTM C39/AASHT0 T 22 and/ or ASTM C78/AASHT0 T 97 at 1, 3, 7, 28, and 56 days	 Calibrate strength gain for early age QC Calibrate flexural with compressive strengths Adjust w/cm ratio to ensure sufficient strength
evelopment	Maturity	ASTM C1074	 Calibrate the mixture so maturity can be used in the field to determine opening times
	Resistivity/F-factor	Soak/store samples in salt solution	 Determine development of F-factor over time Adjust w/cm ratio to achieve required performance
Transport	Sorption	ASTM C1585	Determine time to critical saturation
	W/cm ratio	Microwave	 Calibrate microwave test with batch data
Other	Hydration	Semi-adiabatic calorimetry	 Determine hydration rates of mixture Set a baseline for QC Assess risk of incompatibilities if supplementary cementitious materials (SCMs)/admixtures/temperatures change Adjust SCM source, WRA type, or operating temperature if incompatibility is observed
	Oxychloride risk	LT-DSC on paste	 Assess risk of joint deterioration if salts are used Increase SCM dose if risk is excessive
	Coefficient of thermal expansion (CTE)	AASHTO T 336	 Confirm that assumptions used in structural design are appropriate
	Mortar content	Vibrate a container (air pot) for 5 minutes and measure depth of mortar at the top surface	 This provides information on the coarse aggregate content—maximum is ~¼ in.

How Do We Evaluate the Mixture?

- Some things we measure during construction for acceptance
 - Transport
 - Air void system

Strength

Table 9-4. Field setup t	ests			
Concrete property	Test description		Test method	Comments
	Aggregate gradation		ASTM C136/AASHTO T 27 ASTM C566/AASHTO T 255	 Use the individual gradations and proportions to calculate the combined gradation
Workability	Combined gradation		Tarantula curve	 Adjust combined gradation to achieve optimum workability
	Slump		ASTM C143/AASHTO T 119	Determine WRA dosage range
Air-void system	SAM		AASHTO TP 118	Determine AEA dosage range
Unit weight	Unit weight		ASTM C138/AASHTO T 121	• Confirm basis for QC monitoring
Strength development	Compressive or flexural strength		ASTM C39/AASHTO T 22 and/ or ASTM C78/AASHTO T 97	Confirm strength development
Transport	Resistivity/F-factor		Soak samples in salt solution	Confirm development of F-factor over time
Other	Hydra	ation	Semi-adiabatic calorimetry	• Confirm baseline for QC

How Do We Evaluate the Mixture?

Contractor also needs to watch how things are developing

- Unit weight
- Calorimetry
- Maturity
- Strength development
- Air void stability

QC during Construction

Table 9-5. Mixture QC tests

Concrete property	Test description	Test method	Comments
	Aggregate gradation	ASTM C136/AASHTO T 27 ASTM C566/AASHTO T 255	 Use the individual gradations and proportions to calculate the combined gradation
Workshility	Combined gradation	Tarantula curve	Monitor uniformity
workability	Aggregate moisture content	ASTM C29	Affects w/cm ratio and workability
	Slump	ASTM C143/AASHTO T 119	Indicates uniformity batch to batch
Air-void system	SAM	AASHTO TP 118	Indicates uniformity batch to batch
Unit weight	Unit weight	ASTM C138/AASHTO T 121	Indicates uniformity batch to batch
Strength	Compressive or flexural strength	ASTM C39/AASHTO T 22 and/ or ASTM C78/AASHTO T 97	Indicates uniformity batch to batch
ueveropment	Maturity	ASTM C1074	Opening times
Transport	Resistivity/F-factor	Soak samples in salt solution	Monitor over timeIndicates uniformity batch to batch
Other	Hydration	Semi-adiabatic calorimetry	Indicates uniformity batch to batch

Quality Resource

- Tool for agency and industry
- Gives contractors flexibility to develop QC
- Agency QC Requirements
- Model QC plan
- Control Charts

National Concrete Pavement Technology Center

What is the inspector's role?

- Not a foreman
- Represent the owner
- Catch the things the tests miss
- Actions:
 - Early warning / communicate
 - Request adjustments
 - Stop!!!

Inspector's Role

- 1. Safety & Traffic Control
- 2. Grade
- 3. Geometry
- 4. Concrete Delivery & Placement
- 5. Fresh Concrete Testing
- 6. Vibration

- 7. Steel Placement
- 8. Finish
- 9. Texture
- 10. Curing
- 11.Sawing/Sealing
- 12. Documentation

As the inspector, these are the minimum recommended items to check.

Grade - Stringline

- Check the string regularly
 - Tension (Don't touch, ask contractor)
 - Bumped stakes
 - Haul road stability

Stringless Paving

Stringless Paving

Contractor provides grade verification with total station / prism for inspector

Grade - Moisture

- Base ahead of the paver should be moist
- Watch for excessive water loss into the base
 - Workability
 - Cracking

Geometry

- Check width morning
- Check thickness hourly
- Check cross-slope morning and through transitions

Delivery and Placement

Temperature

- When weather is cold
 - Slower hydration
 - Increased risk of cracking
 - Frozen subgrade/subbase?
- When the weather is hot/windy
 - Rapid hardening
 - Rapid moisture loss
- Follow the specifications for limits

Mixture Uniformity

Homogeneous

- Thoroughly mixed
- No segregation
- Uniform workability

Concrete Proportions

Compare proportions to the approved mix design

 three times per day

0			_		0
0	Job	SD OL			0
0	Ticket No.	1041			0
0	Date	3/26/2011			0
0	Time	15:30			0
0	Batch Size (yd ³)	8			0
0	Formula #	2			0
0					0
0		Target	Actual	IC IC	0
0	Portland Cement	3680	3670		0
0	Fly Ash (lb)	920	920		0
0	Coarse Agg (lb)	10910	10920	3.0%	0
0	Intermediate Agg (lb)	3460	3450	2.7%	0
0	Fine Agg (lb)	10460	10480	3.8%	0
0	AEA (oz)	40	40		0
0	Water Reducer (oz)	304	305		0
0					0
0	Mix Water (gl)	119	120		0
0	Trim Water (gl)	10	10		0
0	Water from Agg (gl)	98	98		0
0	Total Water (gl)	227	228		0
0					0

Aggregate Moisture

- Aggregate weights should include absorbed water
- Moisture contents should be adjusted as needed
- Check batch tickets to look for changes
- E Tickets?

0					0
0	Job	SD OL			0
0	Ticket No.	1041			0
0	Date	3/26/2011			0
0	Time	15:30			0
0	Batch Size (yd ³)	8			0
0	Formula #	2			0
0			1		0
0		Target	Actual	MC	0
0	Portland Cement	3680	3670		0
0	Fly Ash (lb)	920	920		0
0	Coarse Agg (lb)	10910	10920	3.0%	0
0	Intermediate Agg (lb)	3460	3450	2.7%	0
0	Fine Agg (lb)	10460	10480	3.8%	0
0	AEA (oz)	40	40		0
0	Water Reducer (oz)	304	305		0
0				1	0
0	Mix Water (gl)	119	120		0
0	Trim Water (gl)	10	10		0
0	Water from Agg (gl)	98	98		0
0	Total Water (gl)	227	228		0
0					0

Added Water

Water:Cementitious (w/cm) ratio is critical

- Transit mixed concrete
 - Monitor water added on site
 - Reject the load if the max. w/cm is exceeded
- Central mixed concrete
 - Assure that trim water is thoroughly mixed and included on the batch tickets

Delivery Time

Ο

MC

2.5%

2.9%

4.2%

Check transit time Job SD OL Ticket No. Date 3/23/2011 Time 11:30 Batch Size (yd³) Formula # Target Actual Portland Cement Fly Ash (lb) Coarse Agg (lb) Intermediate Agg (lb) Fine Agg (lb) AEA (oz) Water Reducer (oz) Mix Water (gl) Trim Water (gl) Water from Agg (gl) Total Water (gl)

Grade Yield

- Concrete used / concrete required (expressed as %)
 - Example: 256 cy/240 cy = 107%
- Almost always greater than 100%
- If less than 100%
 - Deficient thickness (thin slab)?
 - Incorrect concrete proportions?

E		ונ
000		
C	DOU	J

Vibration

- Stay between 5,000 and 8,000 vibrations per minute (VPM)
 - Excess speed causes segregation
 - Vibrator frequency should be adjusted for paving speed
- Ensure all vibrators are running
- Stop vibration if forward progress stops

Internal Vibration Checks

Rod

Length

Vibration Monitors

Steel Placement

Dowel bar inserter (DBI)

Watch for

- Locations
- Surface voids

Dowel Placement

Baskets or DBI Manually verify bar location (min. 2x per day)

Dowel Placement

Evaluation

- MIT-Dowel-Scan
- Data without shipping wires cut

Tie Bar Placement

Tie Bar Inserters

- Check general locations of placement (timing of insertion)
- Observe contractor is physically verifying locations

Texturing

- Maintain straight tines
- Uniform distance between paver and tining bridge
- Clean mortar buildup from the burlap drags and tines
- Avoid positive texture (noise generator)

Turf Drag

• Watch for cleanliness

Longitudinal Tining & Curing

Curing

- Check material on site
- Note spacing of totes

Curing

- Avoid hand sprays
- Applied close behind the paver
- Specified coverage rate allowing for texture
 - Uniform coverage (no gray streaks)
 - Like a white sheet of paper
 - Two coats are better than one
- Beware of wind

Sawing

Timing

- Too late = Cracking
- Too early = Severe raveling
- Just right = Limited raveling
- Sawcut depth
 - T/3 to T/4
- Location
 - Over the dowels

a) No raveling—sawed later in the window

b) Moderate raveling—sawed early in the window

c) Unacceptable raveling—sawed too early

Figure 8-23. Close-up of different degrees of raveling caused by joint sawing (ACPA)

Sawing Equipment

- Conventional sawing
 - A little later
 - Deeper
- The right blade for the aggregate

Sawing Equipment

- Early entry sawing
 - A little earlier
 - Shallower
 - Blade spins up in front
- The right blade for the aggregate
- The shoe must be replaced regularly

What happened?

Edge blowout with early entry saw

Joint Sealing

- Clean and dry joint faces
 - Sandblast, and dry compressed air
- Backer rod installation
 - Not recommended in F-T environments
- Sealant installation

Summary

- Resources are available!
- https://www.cptechcenter.org/webinars-and-videos/

IDEO RESOURCES LIBRARY							
he following multi-page table of past CP Tech C y-page from the bottom of the table.	center webinars can be searched via the se	earch bar by keyword, p	oresenter, event, etc.—or n	avigated page-			
inspection T							
Video	Title	Presenters	Event	Resources			
PCC Paving Inspection Marchard Strate Strate And Strate Strate Strate Marchard Strate	Portland Cement Concre (PCC) Paving Inspection	L John te Hart L Jerod Gross	Iowa Concrete Lunch & Leam	Slides			
1255	Basics of Concrete Pavir Construction and Inspect	ig 🙎 Jerod ion Gross	<u>Iowa Concrete Lunch & Learn</u>	Slides Tasks			
Concrete Paving Field Inspectors Inspectors Workshop What do you the second sec	tion ing? What do you look for in u paving? What paperwork	rban 🛔 Jerod ? Gross	Concrete Paving Field Inspection Workshop	Slides			

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation