Stages of Hydration

Stage 1: Mixing
- Cement, water, and other admixtures are mixed to form a workable mixture.
- High-range water-reducing admixtures (HRWAs) can be used to improve workability.
- Air-entraining admixtures can be added to create a uniform air-void system.

Stage 2: Dormancy
- The mixture is allowed to rest before activation.
- Water loss and evaporation occur, affecting the setting time.

Stage 3: Hardening
- Hydration products begin to form, leading to increased strength and stiffness.
- Aluminate and sulfate react, forming gel-like substances.

Stage 4: Cooling
- Heat generation decreases as hydration products cool the mixture.
- Temperature peaks may occur, affecting the setting time.

Stage 5: Densification
- Hydration products continue to form, consolidating the concrete.
- Final strength and stiffness are achieved.

Conventional Sawing Window
- Check for conventional sawing:
 - Check for early sawing (after initial set)
 - Check for conventional sawing (after initial set and before final set)
 - Check for early sawing (after final set)

Implications of Cement Hydration for Construction Practices
- Early setting may lead to cracking due to high internal stresses.
- Proper curing is essential for long-term durability.

Hydration Heat Curve
- Heat generation follows a characteristic pattern.
- The peak heat generation occurs during the hardening stage.

Effects of Supplementary Cementitious Materials
- SCMs reduce the heat of hydration.
- They improve early and late strength development.

Effects of Chemical Admixtures
- Admixtures can control the setting time and heat generation.
- They influence the workability and durability of concrete.

Incompatibilities: Early Stiffening / Retardation
- HRWAs can cause early stiffening in SCMs.
- Such incompatibilities need to be managed carefully.

Implications of Cement Hydration for Cracking
- Proper timing of saw-cutting is crucial to avoid induced cracking.
- Factors such as mix design and curing conditions influence cracking potential.

Implications of Cement Hydration for the Air-Void System
- Air entrainment can affect the workability and durability of concrete.
- Adequate air entrainment is necessary to prevent segregation and cracking.