TWO LIFT PCC PAVEMENTS TO MEET PUBLIC NEEDS

Cable and Frentress
October 2004

RESEARCH GOALS

• IDENTIFICATION OF:
 • Construction - strengths and limitations
 • Development constraints – cost, mix design, constr.
 • Research needs – material/ equipment knowledge
 • Goals – improved surface durability, reduced noise, and improved safety
RESEARCH OBJECTIVES

- US and European Synthesis of Practice
 - Location, design, construction details, condition
 - Need for quality and durability
 - Identification of design/construction research gaps

EUROPEAN EXPERIENCE

- Countries employing two lift paving
 - France, Germany and Austria
 - Lessons learned
 - 2-5.5 inch high quality surface courses
 - 8.5-9.5 inch low cost base courses
 - Use of local aggregates in base and imported in the surface
 - Problem with stress intensity noted
 - Two lift paving equipment built
US EXPERIENCE IN TWO LIFT PAVEMENT CONSTRUCTION

- 1906 – Granitoid concrete patent
- 1950-1990 – Interstate mesh pavement

US CONSTRUCTION EXPERIENCE

 - Iowa, North Dakota, Florida, Kansas, Michigan
 - Wet on wet construction
 - Use of recycled materials in base layer
 - Capping of base layer
 - Use of econocrete in base layer
 - Use of durable aggregates in surface or employment of exposed aggregate surfaces for noise/durability
 - All in service yet today.
US PROJECT CHARACTERISTICS

- Facility – street, road, interstate
- Lower lift – gravel or poor limestone
- Width – 24 to 36 feet
- Load transfer – some
- Panel size – 15 or 20 feet
- ADT > 4,800
- Paving method – slipform and/or forms
- Time between lifts – 30-60 minutes minimum

CONSTRUCTION INDUSTRY CONCERNS

- Extra equipment – plants, placers, pavers
- Definition of low quality layer – strength, durability, cost, etc.?
- Construction - site management, trucks
- Thermo coefficient differences between lift materials
BENEFITS IDENTIFIED

- Construction material conservation/recycling
- Materials cost savings?
- Improved surfaces
- Recyclable surface layers

RESEARCH NEEDS IDENTIFIED

BASE LIFT

- Material specifications
 - Lower (base) lift – durability, strength, gradations, recycled material limits, admixture requirements, design depths
- Base Lift Construction guidelines
 - Placement methods and equipment
 - Compaction methods and equipment
RESEARCH NEEDS IDENTIFIED

SURFACE LIFT

- **Material specifications**
 - Surface lift – strength, durability, friction, noise and splash characteristics, admixture requirements
 - Design depths and cap or no cap

Surface Lift Construction guidelines

- Time between lift placement (min and max)
- Need for jointing details and placement
- Bonding need, amount and method of inducing
- Concrete placement methods and equipment

DEMONSTRATION PROJECTS

- Think life cycle in this process
 - How will you rehabilitate this surface in the future?
 - Balance cost of imported surface materials against the savings in local cost for the base layer

Involve the construction industry in the decisions

- Aggregate /material suppliers - material availability, compatibility and goal characteristics
- Contractors/equipment suppliers – set the goal and let them give you ideas on the methods
- Learn from partnering
TWO LIFT OPPORTUNITIES IN IOWA

- Pav’t type PCI<50
 - ACC 252
 - PCC 866
 - Composite 845
 - Total 1963 miles

* Realistic goal – 5% or 500 miles